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The central theme of this thesis is multimodeling. It is concerned
with modeling and control strategy interaction in a multimodel context.
Realistic situations are studied, which allow the decision makers to use
different simplified models of the system. Three different approaches to
multimodeling are examined.‘ Firstly, within the framework of multiparameter
singular perturbations, we demonstrate the well-posedness of an a-priori
selected multimodeling scheme, for a class of Nash and team problems. This
establishes, in some sense, the "robustness" of this multimodeling scheme to
a class of solution concepts and information patterns. Secondly, for a class
of weakly-coupled Markov chains, we use a perturbational approach to develop
an efficient algorithm for computing near-optimal incentive policies, which
allows for multimodeling on the part of the decision makers. Finally, for
a class of linear-quadratic problems, we use an input-output approach to
restructure the problem, and choose appropriate admissible strategies which

induce multimodel solutions.
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CHAPTER 1

INTRODUCTION

The problem of efficient management and control of large scale
systems has been extremely challenging to control engineers. There are
essentially two main issues of concern. The modeling issue is complicated
due to the large dimension of the system. The crucial problem here is one
of model simplification, i.e., how to obtain a simplified low-order model of
the system which would result in an acceptable control design [2,4,5]. .In
large scale systems the model simplification problem is intimately related
to notions of time-scales, weak-coupling and controllability-observability
[1-8]. The control design issue is complicated due to the presence of
multiple decision makers having possibly different goals and possessing
decentralized information. The crucial problem here is to obtain optimal
multicontroller strategies under nonclassical information patterns and
various cooperative and noncooperative solution concepts [9-13]. 1In large
scale system design the intricate relationship between the modeling and
strategy design issues introduces additional complexities not encountered
while considering each problem in isolation. This is due to the fact that
many aspects of the system structure are variant under the control actions.
Many cases of ill-posed closed-loop designs based on reduced-order models
have been reported (see for example [45]). The complexities get more
involved when there are multiple decision makers as opposed to a centralized
decision maker [21-24]. This is because each decision maker's perception

of the system structure and dynamics may be altered by the actions of the other

decision makers. Hence a.y approach towards developing an efficient design




methodology must treat the modeling and strategy design issues in a unified
framework.

The central theme of this thesis is multimodeling. It is
concerned with modeling and contfol strategy interaction in a multimodel
context. In large scale system design, it is desirable to allow the decision
makers to use different simplified models of the system [63], due to: i) the
necessity to ease the computational burden associated with simulation,
analysis, and design; ii) the need to obtain a simplified control structure
which is feasible to implement; and iii) a lack of adequately modeled dynamics
of some parts of the system. In this thesis we study realistic situations,
which allow the decision makers to use different models of the system. It is
our purpose to strengthen and extend the multimodeling concept beyond the
framework within which it was originally introduced in [14,15]. Towards
this end, we examine three different approaches to multimodeling. Firstly,
we consider situations, when a rational choice of the multimodeling scheme
is made a-priori, based solely on the model structure. To establish the
validity of such a scheme we then examine its impact on the design of control
strategies. Specifically, our two main issues of concern are: the preser-
vation of stability; and, a minimal loss in performance. Secondly, we
explore multimodeling possibilities in numerical algorithms which compute
near-optimal policies. Finally, we atteﬁpt to induce multimodel solutions
by an appropriate re-structuring of the problem, and a suitable choice of
admissible strategies. We hope our study would reveal the interplay between
the structural features of the system like time-.scales, weak-coupling,
controllability-observability, and strategy design under nonclassical informa-
tion patterns; and help us to achieve a better understanding of the multi-

modeling concept.
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The concept of multimodel strategies for large scale systems has
been introduced in [14,15] within the framework of multiparameter singular
perturbations. In this framework, a large scale system is viewed as
consisting of a "slow" core coupled to a number of "fast'" subsystems. A
multimodel situation results when each decision maker models the dynamics of
one fast subsystem and assumes a certain reduced-order equivalent of the
rest of the system. The design objective of each decision maker is assumed
to be compatible with the multimodel assumptions, i.e., each decision maker is
assumed not to penalize the neglected fast dynamics in his objective
functional. In [15,16], an attempt was made to interpret this practical multi-
model situation as a perturbation problem since the "k-th model simplification"
is achieved by the "k-th parameter perturbation." Under the assumptions that
the fast subsystems were weakly-coupled among themselves and that each
fast subsystem was affected by the control of one decision maker alone, the
perturbation analysis in [15,16] established sufficient conditions for the
multimodel response to be close to the actual system response. The analysis
served as a basis for a decomposed design approach wherein each decision
maker had to solve a separate low-order control problem in the fast time-
scale, and jointly solve a low-order game problem in the slow time-scale.

The two problems were solved independently to form the composite strategies
which were shown to stabilize the overall system for sufficiently small

values of the perturbation parameters, provided each of the low-order

problems had ‘a stabilizing solution. Furthermore, the multimodel solutiomn

was shown to be the asymptotic limit of the optimal solution, thus establishing

its well-posedness.
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In Chapters 2, 3, and 4, we continue to study the role of time- J
scales in multimodel strategy design within the framework of multiparameter ?
singular perturbations. Specifically, we attempt to establish the validity ;ﬂ
of multimodel generation by "k-th parameter perturbation" for classes of
linear deterministic systems and linear stochastic systems under nonclassical 1
information patterns. 4

The structural assumptions in [15,16] correspond to practical
situations where the fast subsystems are geographically distinct, each under

the direct influence of one decision maker who interacts with the other

ml_‘il

decision makers only through the slow core [3]. But there might be situations

where subsystem characterization by time-scales does not correspond to 3

geographically distinct areas (in which case the fast subsystems might not be
weakly-coupled); and/or a mutual relocation of controls among the decision
makers might not be possible due to the inherent noncooperative nature of the
problem (in which case each fast subsystem might be controlled by more than
one decision maker). In Chapter 2, we examine the implications of relaxing ?
the structural assumptions made in [15,16]. The general multiparameter game

problem has been formulated in [17], and the_ill-posedness of the limiting ;j
solution has been demonstrated through some examples. This happens because

now the decision makers face game situations in both the fast and slow time-

scales, unlike in [15,16] where they faced a control problem in the fast time- ;

scale. In Chapter 2, we demonstrate that multimodel generation by "k-th
parameter perturbation" is still well-posed provided each decision maker

solves his problem by the hierarchical reduction scheme of single parameter

games [21]. Unlike the multimodel solution of [15,16], the above procedure
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does not guarantee stability of the overall system unless the coupling
between the fast subsystems is "limited" though not necessarily ''weak."

In [15,16] only deterministic problems with full state information
for each decision maker were treated. The analysis involved examining the
limiting solution of Riccati equations or coupled Riccati equations only. At
that stage it was not quite clear whether multimodel generation by "k~-th
parameter perturbation" would be well-posed for stochastic problems with
nonclassical information patterns where the optimal solution may involve
integro-differential equations of no particular standard type. In Chapters 3
and 4 we establish the validity of such multimodél generation for a class of
stochastic Nash and team problems. The weak-~coupling assumption on the fast
subsystems is retained to focus on aspects of randomness and nonclassical
information patterns.

In Chapter 5 we consider the average-cost-per-stage prchlem for
finite-state Markov chains with multiple decision makers. The existing
results on Markov games are few [65], and do not provide us with a proper
framework to study the multimodeling problem directly. For this reason we
first obtain fundamental existence results for Nash and Stackelberg solutions
for cases when each decision maker knows only the current value of the state,
and when the leader also has access to the followers' controls at every
stage. An algorithm is obtained for computing affine incentive strategy for
the leader which helps him achieve his global optimum. The practical use-
fulness of Markovian decision processes has been severely limited due to
the extremely large dimension of most Markov chains. Recent applications in
queueing theory [46,47] and management of hydrodams [41,42] have exhibited

Markov chain models with a "weakly-coupled" structure suitable for
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perturbational analysis. In Chapter 5, after obtaining the general results,
we consider a class of controlled Markov models consisting of N weakly-
coupled groups of strongly-interacting states. Each group is under the
authority of a single decision maker having his own performance objecti@e and
the overall system is coordinated by a leader whose objective is to optimize
some global system performance. The problem considered is one where these N
decision makers are in Nash equilibrium among themselves and in Stackelberg
equilibrium with the leader. For the incentive design problem, it is shown
that near-optimal policies can be obtained from multiple reduced-order models.
The basic challenge in multimodeling is to identify the "core"
where there is a strong interaction among all the decision makers and other
low-order subproblems where the interactions are weak. This leads to the
possibility of decentralized strategy design by the decision makers using
several low-order models of the system. Such a decomposition need not be
based on time-.scale considerations alone. In large scale systems, the
decision makers observe, in general, different variables through their
individual objective functionals. These observed variables play a crucial
role in the solution of the problem. In Chapter 6, we focus on the role of
the observed variables in multimodel strategy design. We attempt to identify
the core by examining the observability structure induced by the observation
sets of the decision makers. The system is represented in the observability
decomposition form using the techniques of chained aggregation [8,54,55].
By overlapping appropriately the input structure with the observability
decomposition, we identify a class of admissible strategies, referred to as
Structure-Preserving strategies, which generates multimodel solutions. The

information induced multimodel solutions developed in Chapter 6 are shown
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conditions which depend on the information pattern. Applications to the
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control of large scale interconnected subsystems and multi-area power systems
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are also discussed.

The thesis concludes with Chapter 7 where we summarize the results
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obtained, outline the main contributions, and indicate directions for future

research.
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CHAPTER 2

MULTIMODEL NASH STRATEGIES FOR MULTIPARAMETER
SINGULARLY PERTURBED SYSTEMS

2.1. Introduction

Multimodel strategies for linear deterministic multiparameter
singularly perturbed systems have been obtained in [15,16] under the assump-
tion that the fast subsystems were weakly-coupled among themselves, and that
each fast subsystem was affected by the control of one decision maker only.
In this chapter we shall consider the general multiparameter game problem
wherein the fast subsystems need not be weakly-coupled and each fast sub-
system might be controlled by more than one decision maker. This problem
has been formulated in [17], and the ill-posedness of the limiting solution
has been demonstrated through some examples. This happens because now the
decision makers face game situations in both the fast and slow time-scales,
unlike in [15,16] where they faced a control problem in the fast time-scale.
In the sequel we shall demonstrate that multimodel generation by "k-th
parameter perturbation" is still well-posed provided each decision maker
solves his problem by the hierarchical reduction scheme of single parameter
games [21].

In Section 2.2 the problem is formulated and the exact solution is
given. 1In Section 2.3 a procedure is outlined to obtain decentralized
strategies from multimodel solutions. In Section 2.4, well-posedness of
the multimodel solution is established; and £inally in Section 2.5, the

important conclusions drawn from the results of this chapter are summarized.
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2.2. Problem Formulation

Consider the following linear system controlled by two decision

makers
. 2 2
x = Aoox + ifleizi + 15130:'-“1’ x(0) = X, (2.1a)

£.2 =on+A z,+A, .z, +B +B,.u

121 T AgoXF Az Pz Bt B 2 (0 =2 (2.1b)

1,j=1,2; i#§

dim x=no, dim 2 =ni, dim u =mi, i=1,2. The small singular perturbation

i i

parameters represent small time-constants, inertias, masses etc. We

consider the case when

€1
mS‘t_:—'SM (2.2)

2

for some positive constants m and M. Thus the set H to which we restrict
the possible values of € is a sector in Rz. The matrices Aii are assumed to
be nonsingular. The cost functionals of the two decision makers are

= l-_ ' ' ' ' . = N
I =3 (f) (x'Q x+ ziQiizi+uiRiiui+ujRijuj)dt, 1,§=1,2; 4#5. (2.3)
The usual definiteness assumptions are made on Qoi’ Qii’ -Rii’ and Rij'

;:: _. Notice that the i-th decision maker (DMi) penalizes only z, in his cost
N
» : functional, but not zj. This is because his simplified model would neglect
L
: IS 2y under the multimodel situation. The decision makers select (uI,u;) such
-
X that
N . Ji(u;,u;‘) < Ji(ui,u;) for all admissible us 1,3=1,25 i%3. (2.4)
L
. The inequalities (2.4) define the Nash equilibrium.
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might be situations where subsystem characterization by time-scales does

-
t!l The system model (2.1) is of interest in several cases. There

not correspond to geographically distinct areas (in which case the fast

subsystems might not be weakly-coupled); and/or a mutual relocatiom of
controls among decision makers might not be possible due to the inherent non-
cooperative nature of the problem.

The ill-posed nature of the usual order reduction method for the
problem (2.1)-(2.4) was demonstrated in [17] through some examples. This is
to be expected from past results on single parameter games [21~24], since
now the decision makers face game situations in both the fast and slow time-
> scales, unlike in [15,16], when they had to solve only a control problem at
the fast subsystem level. This apparently minor modification in the situation
destroys the complete decoupling between the two low-order problems, and
forces one to look for noncausal reduced-order models which would yield well-
posed soiutions.

The definitions of the various matrices that appear in the following
analysis are given in Appendix A. Restricting the control strategies to be

linear functions of the state, the optimal solution to (2.1)-(2.4) is given

by [11]
e u* = -R7IB'K. %; x =[x 2¢ 21 (2.5)
- i 117145 1 “2 .

where Ki is a stabilizing solution of the coupled Riccati equations,

Q1+KA+A'K1-KSK -K.SK,-K.SK +K,S, K, =0

1441 133 331 31373
1,§=1,2; 143, (2.6)
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Notice that since A and B, are functions of € K, is also a function of ¢,.

i i i
In general even for low-order problems the presence of ¢ causes numerical

"stiffness'" in (2.6). The optimal cost of each player is given by

it - -;- £(0) 'K, (£)%(0); 1=1,2. (2.7)

2.3. Multimodel Strategy Design

The notation (,)(1) in the following formulation refers to the
quantities associated with DMi's simplified problem. DMi arrives at his
simplified model by neglecting the jth fast subsystem, i.e., by setting

ej-O in (2.1). This gives

3 L a7l Dy, L@, WD ep Dy, | (2.8)

b j3 730 jii ji i i35

Substituting (2.8) in (2.1) for zy results in DMi's simplified model

AR T\ S N O I O C IO S S

of 1 oi 1 of 3 °
eizii) - Af;)x(i)+A&)zi(i)”ﬁ)ufi)”g)uj(i); zii) (©) =2, (2.9)

The cost functionals of the two DMs as viewed by DMi are obtained by sub-

stituting (2.8) in (2.3)

) J1 7 Wy W, (W' (W, W (W), W' (1)
4 2({(" Qi* " F2y 7 QT tugT Rygutt et R yu T de

3O 2L G WM, (DM, W) g (10D (1) | (15D (0

] 0 oj i 33 1 ij “i j i
(L)', (1) (1) @) ' (1) (1) @' (1) (1) (1) ', (1) (1)
+ 2% Pj u:l +Zzi Ti ug +22i Tj uj +u‘_j Rjj u:j
(1) (1) (1) ., (1) (1) (1)
+ui Rji u, -*-Zu:l ij u, yde. (2.10)

|
|

L DA G N I A _,....-AJ'
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We propose to solve the game (2.9)-(2.10)by the hierarchical reduction scheme
of [21] which transfers fast game information to a modified slow game.
The fast subsystem is derived by assuming that the slow variables

are constant during the fast transieats,

; (1) 1) (1) a1 (1) (1) (1)

3255 = Ajy Zif TBipuie TRy vye (1)(0)"2 10 ;ii)(O)‘ (2.1)
The associated cost functionals are
D+ 3 [ el ool i P e
;i.') "‘%f (z (?,Qﬁ.) i§)+zzj(.;)' j(.:l.) j(_iF.)+2 (2)’ ;i) :&)
R T O TN e
where 25/ =21 -3 ) and ) 15 found from (2.18).

The linear closed-~loop Nash strategies for (2.11)-(2.12) are given

by
9 - G DD -
j(;) j(ji)-llT(i)'”S) 'ché) 1,j(;) -1s L A
- §§) ié) (2.13b)
where Kié) and ng) are stabilizing solutions of
Quy +Ry A+ Kig -Ri B P P B D kP (P (D
VISR SRV (2.14a)

if 1i4if

...............
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1), 1) (i) (1)' 1) (i) (i) (1) (i) (L)' (L)' (i) '
Qpy  *Ryg Afy FAL Kyl = [RyTB T+ T A" - M [Byy” Kyp' +T,77 ]
w3 Ry (DT (1) L g, (2.14b)

Mir Ryi My " Myp Ryy ¥y

Next we make use of the fast controls (2.13) and substitute the following for

uii) and u(i) in (2.9) and (2.10),

b
“ii) g) ii) -ii) (2.15a)
CO NNV CO M c VMY CO (2.15b)

3 BT “3

The new system and cost functionals are given by

FLCS Agi)x(i) A, (1) g1 (i) | p(1) (1)

1)
oi i oi i 0j j ’ X (0) = xo (2.16a)

(i) (i) (i) ~(L) (i) (i) *(i) (i) (i) Q)

4% Ao *hyCz ¥Ba T RBGT s 2 (0 g (2.26D)
i) _ 1 i)' ( ) 1y's (1) _ (i)' (i)' (i) (i)' (i)
) '2{; Qex "tz Qg (Me" Ryguy " #Me” Fyqu)

~(1)'. (1) A(1)' ~(1)
-l-ui Ry Uy +uj Rijuj ldt (2.17a)

7D '%f {x (1)
0

W @, (i)"(i) (1) . (1) "a{L) (i)+2x(1)'s(i)&(i)
h i

Q3 % Qs 2 T2 Yy 3

(1) ') ~(1) (1) ')~ (1) (1) 'a(1) ~ (1)
2x PJ uj +Zzi T uy +22 Tj uj

COLICOPNCIRPY CORM cDIYCANNPN CORMICDINCO I

Fugt RyTu g Ry Tug 207 Byt (2.17b)
Now we set €, =0 in (2.16b) and solve for z(i),
EO NN CORL PN CO N CONNM CORY CORMM COEY cY
R L LN NS P g AP IO (2.18)
(1)

Substituting (2.18) for z in (2.16a) and (2.17) , the slow subsystem and

i

cost functionals are obtained as

""""" PR WY ARG TUPUL VU VAR SRR RN, SRV |




PCO NN €SI CO NN €O 1 (1)”(1) (i), x 0y =x (2.19)
s os s is is j s o

PSSR G C RN CO N A P D750 |, (W1
2 s
0

is *g is g :I.s Yis js
W' @) @) s 451! (1) A (i)
+a, 0 R G T +G Eh RiJs Js +2ua is Pii is }dt (2.20a)
(i) <1 1)’ (i) (i) (i)' (1) - (i) (1)'5(1) A (i) ~(1)' g1 a(d)
s T2 é " Yas %15 %s TG BysTtyst TS Ryg Vs

+oD gD (L) o (1) "5 (1) A (1)
Uy Ryjglse *20500 Piicus }de. (2.20b)

Notice that the slow subsystem and the associated cost functionals contain
information about the fast game. The linear closed-loop Nash strategy for

(2.19)-(2.20) is given by

~(1) -lg(1) (1) 3P 'y (1) ey (1), (1) )y (i)
Us TRy [Sis Xs Bis Kis'®s *Piet js 1= is (2.21a)
O NN C Ot (1) I CVIRPYCORMICH I (i) pD AW | (D) (1)
Yys jj [P Xs +Bjs is * jjs Ugg 1 =M 4s *-, (2.21b)
where Kj(_:) and K:g) are stabilizing solutions of
(1) L g1, @) L @' @) | (D) | p (1), (1) _ (1)' (1) 5(1) (i)
Qis +Kis os +A°s is [K js +P ]Mj [K js +P 1

(i)' 1) _ (D' (1)

js Riijs Mis RiiMis 0 (2.22a)
(1) , (1), (1) (L)' (1) | (1) (1) (1),,(1) _ (i)' (1) (1) (i)
st +st Aos +Aos js - [K is +s is ]M [K i +S ]

+ulD B0 (D7D g (2.225)

is “jisis js jj is

Hence, the composite strategies for the simplified game of DMi are given by

amiacdeeaintedbendbediondbiodhindicintibdeifoted Ao el g . » M P S AP I WY




»

T SR T

g
F_‘
[

L e oar an o3¢ G- £ BN Sasr SN ey mi ol a4

At a

DONRY

15

NORONC NV ORS

if “1
(1) o (D (D) _ @, W), a12: _
uj = -Mhs X -'Mjf z, s i,j=1,2; i#5. (2.23)

The decentralized multimodel strategy which the two decision makers
use on the full system (2.1), as obtained from the two simplified games, is

then given by

u: - —Mj(_:)x—Mj(é)zi 3 i=1,2. (2.24)

Remarks:

1) The slow and fast subproblems are both game problems, and are
different for both the players. This is in contrast to the weakly-coupled
problem considered in [15,16] where only the fast subproblems, which were control
problems, were different for the two players; whareas the slow subprocblem, which
was a game problem, was the gsame for both the players.

2) The system and cost matrices of the slow subproblems of both
players contain information about their respectiva fast games, highlighting the
"anticipative" nature of low-order models in multiple decision maker problems.
This is again in contrast to the weakly-coupled case of [15,16] where the fast
and slow subproblems were solved independently.

3) The multimodel solution of [15,16] did guarantee the stability of
the overall system for all ¢ in H, but the multimodel strategy (2.24) obtained
when the fast subsystems are not weakly-coupled does not guarantee gtability,
unless the coupling is limited (not necessarily weak). Thereforé, the following

assumption is made:

.............................
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Assumption A: j

The solutions to the reduced games exist, and when the multimodel

strategy pair (u(l:,u;) is applied to the original system (2.1), the closed-loop -

system remains asymptotically stable for all e in H.

;
p 2.4. Asymptotic Properties of the Multimodel Strategy

. In this section, we shall show th_at the multimodel strategy and the
resulting costs are well-posed in the sense that they tend to the optimal

P‘ strategy and costs respectively in the limit as the small parameters € go to é
zero.

The multimodel strategy (2.24) is pixt in a convenient form as

P follows: i

c_ . T (D o Tl B
! 11[301 Byy/ey Byy/epl | Kyg 0 o1} x ]
(1)
*151a “1%1¢ 011 % 1
(l) (1) .
~5[(AgA 22) Kig "eg(Apoh zz) Kig O 1
4
+(A12 22) K! ] L 2-‘ :.
- -RI]]:B]'.LI:Z (2.25a)
- 2 — — .
u, = 'Rzé‘[Bc')z Biy/€) Byy/e,l K;s) 0 0 x ;
(2)
ey [gATD" (2) .
0 e (Al K] | 7 ;

+(A21A;.l) K‘Z'rn]
' (2)
= “252m 0 LY Z, i

et b

Rt o
R2232L2x (2.25b)

PRI et T e T s T e e e e .. . .
'-l.ALLR'A“-uLLLLm PR PR W W LI W VLA WP UL NP WY WERY Y U Y Wy LY L
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where

K, = (A0 kDD (1)4_{K<1> (0B x g5 D)L D))

im io is s j js i is ii" jjs
(1) _p(D) p=1,(1) "=1 p (1) (1) (1)t
[Ry7-PiigR 11P33 (B Kyg ¥Ry M H]A
1,§=1,2; 1i#j. (2.26)

To avoid unboundedness in the solution of (2.6) as ¢+0 in H, and taking into

consideration the symmetry of Kl’ Kz and the special forms of A, Bl, BZ’ we
seek the solutions Ki of (2.6) "in the form

B (i) (1) g (1) .

K (¢) elK01 (e) € 02 (¢)
. (1)' g1 e (i) . =
Ki(e) el o1 (e) € ll (g) €€y K (e)} ; i=1,2. (2.27)
)
LezK(i) (e) ve 152 K(i) (<) €, g;)(e)

Theorem 2.1: The following relations hold under Assumption A:

(1) (i)
Koo Y is

1) oy o
Koi (0 Kim

(1) (1)
Ry 0)

if
P = 0
gj)(O) = -[(a jAjj)'K(i)q-(AijAjj) R 1'; 1,=1,2; 1%
K O = /oy K Gy )
€D o) = -/ (a, 7 'ED

SR K ol O T sl S i A PP S AP VR PN P PG S P G e
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where

o
a = lim (—).
3 1ebs0 &y

Proof: The proof involves substituting (2.27) in (2.6) and taking the limit
as el 0, The detailed manipulations are lengthy and are omitted here for
the sake of brevity.

Corollary 2.1: If the multimodel strategies exist, then

lim (Li(s)-K*(e)) = 0.
lel>0 -

Proof: The result is an immediate consequence of Theorem 2.1.
When the multimodel strategy (ui,ug) is applied to (2.1), the
resulting cost is given by

JS = % x(0) 'V, (e)%(0);

i i=1,2 ,

4

(2.28)

where Vi(e) satisfies the Lyapunov equation

- - - - ' ! +L!s = 0. 2.29
V, (A-8 L, -8,L,) + (A-S;L =S,L,) 'V, +Q; +L;S L, +L.S, L, ( )

By Assumption A, Vi(e) exists and is positive definite for all e in H.

Lemma 2.1:

J; = Jf +0(el); 1i=1,2, Ve in H.

-K,, we get

Proof: Subtracting (2.6) from (2.29) and letting wi-vi i

Wi(A-SlLl-SZL2)+-(A—SlL1-82L2)'W14-(Ki-Li)'Si(Ki-Li)+-(Kj—Lj) Sij(Kj—Lj)

+K,S,(K,-L,)+ (K -L)'SJ,K +K,S,, (L. -K )+ (L -K (2.30)

35y Kyl + Ky=L ) 7S Ry + RS,y (LK) + (Ly=K)) TS, Ky = 0.

3

From Corollary 2.1 and Assumptiou A, we get

S g

v v
ate gty
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g~
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lim Wi = (; i=1,2
1i>0

and hence J;=JI + O(lel); 1i=1,2 Ve 1in H.

We have proposed that the multimodel strategy (ui,ug) be used as an approxi-

mation of the exact Nash strategy (ut,u;). It is not clear at this point

why decision makers, who are interested in a Nash strategy should use the

multimodel strategy. The exact Nash strategy (uI,u;

(2.4), which guarantees that neither decision maker can reduce his cost

) satisfies inequality

functional by unilaterally deviating from (uI,u;). Unfortunately, the multi-
model strategy does not possess this property, and hence it is necessary to
establish its near-equilibrium property [20]. We have shown that the
resulting costs of the multimodel strategy are O(lell) close to their Nash
equilibrium values. However, closeness of the costs alone is not sufficient.

If player-i uses u:, player-j solves an optimal control problem in u The

5

strategy u® must be a near-optimal strategy for this optimal control problem,

3

otherwise player-j would have no motive for using u;. This guarantees that
the j-th player cannot reduce his cost by more than O(§ect) if he unilaterally
deviates from (u;,ug). Hence, practically the players have no motive for
cheating. This, however, is not a guarantee against cheating. It is quite
possible that the j-th player deviates from uS and uses another strategy u

3 3

that reduces his cost J, no matter how insignificant the reduction is; but in

3

doing so hurts the other player by causing a substantial increase in Ji' Hence,

for (ui,ug) to qualify as a near-equilibrium strategy pair, it must be true

that any 4, that results in J,(uS,d

J i IR S R
than O(fel). The definition of a near-equilibrium strategy as given in [20]

)Y<Jd (ui,u?) cannot increase Ji by more

does not require the existence of a Nash equilibrium strategy. Here we shall
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;! show that the proposed multimodel strategy (ui,ug) is not just near-equili-
brium Nash, but being O(lel) close to (u;,u;), is also asymptotic Nash.

Define the set of admissible strategies for player 1, when player 2

uses u;, as the set of linear feedback strategies of the form,

u, = -Fl(e)i = -(Flo(e)x+-Fll(e)zl+-Flz(s)zz) (2.31)

1

such that the closed-lodp matrix

A, = (A-B,F,-S,L))

is stable for all € in H. To avoid mathematical complications, the feedback

matrices of (2.31) are restricted to be of the form,

F (e) = F., +0(lel); i=0,1,2. (2.32)

1i

Denote this set by U The set of admissible strategies for player-2 when

1

player-1 uses u is similarly defined and is denoted by U

1 2°
The following lemma is needed to establish the near-equilibrium

Nash property of the multimodel strategy.

Lemma 2.2:

IMAL

) Dok pat o
TR I
ot

B E% T T T T B

ot

J (ulsuz) Jl(ul’uz) - 0(H€H), Vul 1° e in H.

Eﬁ? Proof: Let

3 I (u,,ut) = £ 2100yT,£00) (2.33)
2 1\t T2 1 .
;r, where Tl satisfies

p" - -

- Ty(A-ByFy =S2K) + (A = ByF) =5,K) 'T) +Q +F Ry F) +KpS 0K, = °
3 and

= c 1 -

o J1(u15u,) = F x(0) 'R, £(0) (2.35)
&

355

R

Yy

P

e’

Al Bichd

B I B I I T T T M . . oA . . .- .
| RS KRR R PRI SR ——
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where Pl satisfies

'
+ LZSIZLZ =0,

(2.36)

Pl(A - BlFl - Ssz) + (A - BlFl - Ssz) 'Pl +Q1 +FiR11Fl

Subtracting (2.34) from (2.36) and letting N, =P -T we get

Nj (A -BiF) -SyL,) + (A -ByF) -S,L ) 'N, +T,5, (K, Ly) +(K; - L) 'S,T; '

(K ~1p) "S15 (K ~ L) +Kp8) 5 (g ~Kp) + (Ly = K5) !5y K, =0 . (2.37)

From Corollary 2.1, and knowing the stability of (A—BlFl-SZLZ) Ve in H, we get

lim N,=0
lieli-0

which proves Lemma 2, 2.
The following two theorems establish the near-equilibrium property of

the multimodel strategy.

Theorem 2.,2:

c cC c
Ji(ui'uj) sJi(ui’uj) +0<H5u); VuiEUi, € in H; i,j = 1,2, i#j

i.e., the multimodel strategy is almost secure against cheating.

Proof: We have
c ¢ c c ¢ * * * ko c
31(“1'“2) = Jl(ul,uz) + Jl(ul,uz) -Jl(ul,uz) +J1(u1,u2) Jl(ul,uz)
* * %*
Since "1(“1'“2) ‘*’1(“1’“2)' we get
c ¢ c e ¢ * * * e
Jl(ul,uz) < Jl(ul,uz) + Jl(ul,uz) -Jl(ul,uz) <+ Jl(ul,uz) - Jl(ul,uz)

From Lemma 2.1 and Lemma 2.2, it follows that
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Jl(ui,ug) < Jl(u,_,ug) +0Cllell)  vegu, .

This proves the theorem for i=1l, j=2, The other case is similar,

Theorem 2.3:

HCOEHERAOAWELEDHE

-~ C =~ c [
VujGUj such that Jj(ui’uj)s‘rj(ui’uj)

Ye€H;1,ij=1,2; 14

Proof: We prove for i=2, j=1, The other case is similar. Suppose player-2

uses u;- -Rgg"BiLz;E; the optimal reaction of player-l is given by

~ye - Py
u, = ‘RI}..B]'.MI.X (2.38)
resulting in
I, (67 uS) = £ 2(0) "M, %(0 2.39
1 “1’“2) 2 x( ) ].x( ) (2.39)

where Ml gatisfies

(2.40)

Subtracting (2.40) from (2.29) for i=1, j=2 and letting ¢=V1—Ml we have

$(a- lel - SZLZ) +(A - lel - SZLZ)'Q +M181(M1'Ll) +LiSl(Ll - Ml)z 0.

(2.41)
It follows from Theorem 2.2 that
ke
3,08y ,ug) = 34 (u],up) =0Cllel) (2.42)
or
lim d(c) = 0 (2.43)

Hell—~0

et
e
—an A
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! n and hence to satisfy (2.41) we should have

;ji . 1im (1,1 -Ml) =0, (2.44)
mo liell-0

. - Let &1 = -Flﬁ, 316 Ul be any strategy such that

Jl(ﬁl,u;) - 21 :2(0)'1)1:2(0) < Jl(u‘l’,u;) = -21- x(0) 'v1§(0) )
(2.45

AT

Dl satisfies the Lyapunov equation

- - - - 1 ] -
Dl(A BlFl 82F2)+(A B].Fl SZLZ) D1+Q1+F1R11F1+L53121:..2 (02.46)

u -
r-
,?_1
e
P s
r_-

Subtracting (2.40) from (2.46), ¥, =D,-M, satisfies

- . R - =0 . (2.47
¥1(A-BiF; =S5L,) + (A -BF) -S,L,)'Y; +6=0; ( )

where
- “haty a ' Sy - .
8 = (R B{M - F)) 'Ry (R] 1B, -F)) (2.48)
From (2.45) it follows that
0= §(0)"1’1(€)§(0) £ £(0) '3(<)%(0) . (2.49)
Hence, due to (2.43) we get
lim Yl(e)ao ; . (2.50)
ell-0
and therefore, from (2.47) it follows that
-1
1im (R,,B!M, -F,) =0. (2.51)
Jemo - XL L
Equations (2.44) and (2.51) show that any strategy ﬁl satisfying (2.45) must
satisfy
Iy -F.)= 2.52
lim (RI.IBILI Fl) 0. ( )

If&il-0




....................................................
......

24 4

PN N

! Now, ) -

3,(8,,u5) =3 £(0) 'D,(0), I, (u,u5) =2R(0) 'V,%(0) ; (2.59)

where 1:)2 satisfies the Lyapunov equation -
- - - - t ! 1 = :

Dz(A B]_Fl ssz) + (A BlFl SZLZ) D, +Q2+F1R21F1+L2821.2 0.
(2.54)

Subtracting (2.29) for i=2, j=1 from (2.54) and letting \}‘2=D2-V2 we get

1, o o=l -
+ (Rl.]]:Bl Ly - F)'Ry; (Ry By - Fyp) +L1B Ry Ry, (Fy Rllfﬂi"l)

-1 1 1 -1 '
From (2.52) and knowing the stability of (A- Bl 1 SZLZ) it follows that
linm ‘i‘z =0 (2.56) .
Il ell~0 -
2
which proves the theorem for i=2, i=1,
By a simple modification, the multimodel strategy (2.24) can be reformulated .;
;Ej:i as a linear function of the slow state alone. To obtain DMi's modified multi- j
E model strategy, we substitute (2.21) into (2.18) to give
]
S(D) | a1 (D _p (1), (1) (1), (1) (1) :
% Ay’ (A By Mig By Mygt)xg (2.57)
f’ Substituting (2.57) in (2.24) for zii) we obtain, =
%
c (1) _ (i) (1)-1 (1) _ (i) (1) (i) (i) 2.58 2]
ugy ® oMy TM AT (A TR B M ) X (2.58)
.
R
'\'.l.x;‘_’;;‘-;-_x_, _. e e Smoa




......................

.......
.................

25
I This can be factorized to put into a convenient form,
- et it 1
2 ul, ’Rli“’c'n. Bj1/¢1 Ba1/5,] Kl(s) 0 ol =
o :,
I ElKlm o 4] 0 zl
- - -1, ’
: € [(Agts3) Ky -
ol = 0 0 z,
te !
| |+(812827) 'K gl L
- SRS S (2.59a)
! RipBylg*® i
- ¢ w g lra T 2
e uy . = RyylBgy Bip/ & Baa/ Sl | Ky 0 0 |}=x
-': - -1 ' (2)
- e l@g1811) Ko
: bz O OB
¢ +(Ay1411) 'K5]
, 7y ]
I *2Km 0o 0 L‘z
- -Rp,BIE,R (2.59b)

where

= (1) (1), (1) (1) (1), 1, (D)7
R, =&, - @D gDy gy Dy g5 Dy yat05 145

im i io ii is i ii if °
i s (2.60)

The resulting cost,when the modified multimodel strategy is applied to
(2.1), can be written as

g Iy = 2 X(0)'V, , %(0);

3 i_" 2 ( ) 14 X(O), 1.1,2 H (2-61)

’ ( vwhere V, satisfies the Lyapunov equation

A

L -~ ~ -~ - - ~ -~ -~

| v, ,(A-S,L,-S,L)+(A-S,L, - ' ' ' =0,

L 1408 - Syl = SpLy) + (A= 8yL) - SyLy) 'V, ,+Q; +L4S Ly +L1S, L, =0

: (2.62)

['_ 1,i=1,2; 1 4]

i Ar A

; 1f is block D-stable [18], then from Assumption A it follows that

| A A
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(A-8
definite for all ¢ in H. Following the methods used earlier, it can be shown

that s

”%*
Ju =J, + o(liell); 1=1,2 V¥e in H. (2.63)

This is true because

¢ *
Ji(ui,u“) -Ji(ui,uj) = 0(llelh) Yueu,, ein H; 1,5 =1,2; 144.
(2.64)
The above fact follows directly from the discussions in [25], and Lemma 2.2.

Hence, together with (2.63) and (2.64) we establish the near-equi-

librium property of the modified multimodel strategy, namely,
I, ,,08 ) s, (u,,us ) +0(Cell)s Yu, €U, cdn B; 1,5=1,25 i 4
i izv j£ i i’ j‘ [ 3 i i’ ’ 1 3% j*

(2.65)

Ji(uiz,ﬁj)‘.]i(uiz,u;") +0(llelly; vﬁjevj such that Jj(u;‘,ﬁj)s.rj (ui‘,u;")

Yein H; 4,j=1,2; 14} (2.66)

Finally, we would like to remark that though the approximate strategies

derived in this paper possess near-equilibrium and asymptotic Nash pro-
perties, the resulting state trajectories are within O(lel) of the optimal

trajectories only outside some boundary-layer.

T M ] v T
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lf‘l -Szf.z) is stable for all ¢ in H; and hence Vu‘ exists and is positive

The modified multimodel strategy also possesses the near-equilibrium property.
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' 2.5. Conclusions
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In this chapter a procedure has been formulated to obtain decen-

T

-y

tralized strategies under a multimodel situation. The proposed strategies

are near-equilibrium and asymptotic Nash. The subsystem classification was

K
.

based on time-scale separation, which allowed the system to be modeled with

e
A
P

"
:
A
3
1

-
-
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multiparameter singular perturbations. The weak~coupling assumption made on
the fast subsystems in [15,16] was removed. This apparently minor modifica-
tion in the model structure changed completely the multimodel solution
procedure. The reduced games for the two players became completely differenc;
f% in contrast to the problem in [15,16] where the two reduced games were only
partially different, the difference being in the fast control problems; the
slow game problems being identical for both the players. Moreover, the multi-
!’ model solution in {15,16) guaranteed the stability of the overall system for
all ¢ in H; but the multimodel solution proposed here,under the absence of
weakecoupling, failed to guarantee the stability of the overall system unless
!ﬁ the coupling between the fast subsystems is limited (not necessarily weak).
In the case when the boundary-layer system is asymptotically stable for all
€ in H (block D-stable;, a procedure is given to modify the multimodel
strategies to obtain strategies which are linear functions of the slow state
alone. These modified strategles are also near-equilibrium and asymptotic

Nash.
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CHAPTER 3 ;4

A MULTIMODEL APPROACH TO STOCHASTIC NASH GAMES

3.1. Introduction

In this chapter we establish the well-posedness of multimodel
generation by "k-th parameter perturbation'" for a class of stochastic Nash
games with a prespecified finite-dimensional compensator structure for each
decision maker. The weak-coupling assumption is retained to keep the analysis
simple, and focus on the stochastic aspects of the problem.

In Section 3.2 we formuiate the problem and raise some crucial ]
questions. Section 3.3 demonstrates multimodel generation. In Section 3.4 o
we establish the weak limit of the fast stochastic variable. In Section 3.5
we solve the slow subproblem and in Section 3.6 we solve the fast subproblems. :]

In Section 3.7 we examine the limiting behavior of the exact solution and

establish the well-posedness of the multimodel solution. Finally, in Section

3.8, we conclude the chapter by summarizing the main results.

3.2. Problem Formulation

A linear stochastic system consisting of a strongly-coupled siow
core and weakly-couplead fast subsystems controlled by two decision makers

is modeled by

2 2
z =Az + LA - .
o zZ, 551 szj jL B juj + L oV zo(O) z .- (3.1a)
€2, = Aioz°+Aiizi+eiiAijzj+B u, +/_L zi(O)-zio; .
1,1=1,2; 1i#§ . (3.1b) 1

...............
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!3 with the observation vectors for each decision maker given by
Vo1 = C01% * Vo1 (3.2a)
- Yy = Gty t ey ;o RL2. (3.2b)
where dimz°=no, dimzi=ni, dimui=mi, dimyoi=P°i, dimyii-Pii; i=1,2.

- The processes w, vo are assumed to be independent white Gaussian with

1 V44

. t: covariances W, Voi’ and Vii respectively, with positive definite Voi and vii'

o - The initial conditions are assumed to be Gaussian with

l?'[zio] ® 250 !

E[(z:l.o-z:!.o)(z;lo—zjo

IR 1,§=0,1,2. (3.3)

The small singular perturbation parameters ¢, represent small time-constants,

i

inertias, masses etc.; while the small regular perturbation parameters €44

represent weak-coupling between the fast subsystems. The states z, are "fast"

since their derivatives are of order-l/ei. The matrices A,. are nonsingular.

ii
The main idea behind inserting the /EI factor multiplying the white

noise terms in the state and observation equations for the wvariables zl, z2

is to make them meaningful fast variables for control and estimation purposes.
Without /E: in the state equation, the variable zi(c) tends to a white noise

vector with infinite variance parameter as ei-*o. If this factor is dropped

from the observations equation, then zi(t) cannot be estimated meaningfully

because the signal-to-noise ratio tends to zero as ei-*O. A more complete

discussion about the use and justification of this model can be found in [33].
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The cost functionals of the two decision makers are given by

T
l ' - ' - p-
Ji = E-{zo(T)Foizo(T)4-eizi(T)Fizi(T)4-£ (onoizoi-z Q.z

+u'R,u,)de} i=1,2. (3.4)

iii

The equilibrium solution to the stochastic zero-sum game under
general information structures has been obtained in [26,29]. The solution
has been shown to require infinite-dimensional compensators which are not
practical to implement. Afthough the general solution to the nonzero-sum

Nash game has not yet appeared in the literature, it appears however, that

infinite-dimensional compensators would still be required. In such a case,

one can either make specific assumptions regarding the information structures

of the two players, under which the required compensators turn out to be
finite-dimensional dynamic systems [28]; or solve the problem under the

formal restriction that each player is limited to a compensator of fixed

e

"

dimension, the output of which is all that is available to him in the genera-
tion of his control at that time [35].
Our intention here is not to solve the general LQG Nash game, but

to obtain approximate limiting strategies for a given solution methodology.

For this purpose, we extend the results of [35] for the constrained esti-
mator problem, to two-person nonzero-sum LQG Nash games and based on this
solution methodology obtain the limiting strategies under a multimodel
situation. Our motivation in taking the above approach is that finfite-
dimensional estimators are practical to implement, and possess some nice

properties.
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n r‘ The definitions of the various matrices that appear in the

' 11!
1 zz] ’
', the system of equations (3.1)-(3.4) can

following analysis are given in Appendix B. Defining x ={| z; z

[] [} ' ' - [} ]
ot j— Fogl ' vy = vy Vi

be written i:l.n a composite form as

v =y

2
X = Ax + jlejuj + Lw; x(0) =X, ‘ (3.5)
vy = Cx + vf"; i=1,2. (3.6)
= X . -- -- 4 =
E[xol X 3 E[(xo xo) (xo xo) ] N (3.7)
where dimx-n=no+nl 27 dimyiapi‘Poi-'-Pii
1 T
R Y ) ' ' . =1.2. 3.8
Jo=5(x (T)I‘ix('r)+f (x'Q x+u R u, )dt}; i=1, (3.8)

0

Each decision maker is constrained to use only an n-dimensional compensator

of the form

X, = Fyxy + G ly,~Cyx, ] + Hyu

1443 i=1,2. (3.9)

The decision makers are required to select the matrices F;, GI, H].’f, the
initial conditions :’E:(O), and the closed-loop control laws uz(ﬁi(t),t), such

that

E[Ji(uz,u;)lxi] < E[Ji(ui,u;)lxi]; 1,j=1,2; 1#j. (3.10)

where Xi denotes a combination of §i(t) and the a-priori information.

The pair of inequalities in (3.10) define the Nash ec'luilibrium
for the problem (3.5)-(3.9).

To solve the problem posed in equations (3.5)-(3.10), we need the

following result which is a generalization of [35] for the nonzero-sum case.

I |
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Theorem 3.1: A sufficient condition for two closed~loop control laws
(uI,u;) to be a Nash pair for the problem defined by (3.5)-(3.10) is that

there exist real-valued functions I i(x,t) differentiable in each variable,

which together with uI and u; satisfies for all te [0,T] the following

conditions:

~

Defining for all t€ [0,T], the scalar functioms Si by

2
,uz,t) = Iit(x,t) + Iix(x,tz) [Ax+j§ B.u +Lw]_

S;x,u 135%

1

1 . 1 .,
+2inx+2uiRiui

=
b,
3
b
=
p. -
s

=

Eiatt }

- . .
u&in E{Si(x,ui,uj,t)lxi(t)} 0

E{§i(x,u;,u;,:)lxi(t)} =0
I,G,T) =2 x'T,x

i,§=1,2; i#j.

EZ';: Applying Theorem 3.1, the solution to the full problem (3.5)-(3.10) is given

E;':'.: by

o * “lpk & (3.11a)
e up = Ry BRexy '

-

- -1 -1

T * = Aa ! + - - (3.11b)
Fi = A-ByR,BK, [T+ (M, -M, (M M) 7]

= 1

e % - ..~ (3-11(:)
FS Gy = MYy

- * o (3.11d)
- Hi Bi

L < - ¥ 3.11e
& xi(O) X ( )
T';_‘ whera Ki satisfies the coupled Riccati equation

q

r—
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z ' - - - = 0; =T , .12
K1+K1A+AK1+Q1 KisiKi Kistj stjKi 0; Ki('r) I‘i (3.12)
. M(t) is a symmetric nonnegative definite matrix defined as,
x
M(t) = E{m(t)m'(t)} m(t) = x—il (3.13)
: x—:‘cz
L
i - satisfying the differential equation
b % = PM+MF' +B®B' ,
- -y
with Mij(o) x°x°+N, i=j3=0
= N ; elsewhere. (3.14)
The following relations can be readily derived:
E{x(t)lxi(t:)} = &, (t) (3.15)
? E{(x(£)-% (£))%(E)} = O (3.16)
! o E(x, () [X, (0)} = [T+ (M, -M, )M _-M_)"LIZ, (o) (3.17)
. 1 1 jo 41’ Voo oi’ 1% .
L
q ' '
- Mio ™ Mot = Mg = Mgy (3.18)
. I(x,0) =% x'kx+1b, () (3.19)
! 1 2 i 2 1
T
. - .20
g b, (t) tr{{ (Kisixiun-rKiijjujo+xjijiuoj)dr} (3.20)
)
* D .21
» E(Jilxi} 3 [x{(0)K, (0)x, (0) +ex{M  (OIK, (0)}+b, (0)]. (3.21)
Notice that the optimal control gains are independent of the filter matrices
L and covariances; but the optimal filter matrices and covariances depend on
&
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s e
Py

the control gains resulting in a 'dual effect" which is optimized with 71
respect to the given filter structure and the cost functionals. B
The linear strategy (3.11la) is the unique Nagh strategy for the ié
above problem. Nonuniqueness does not arise because it is not possible to —
express ii at time t, in terms of the values of ii from 0 to t, due to the g
presence of white-noise-corrupted measurements (3.6) [27]. ;1
The following assumptions are made throughout.
Assumption a: Rel(Aii)<o : i=1,2. 4
Assumption b: The triple (Aii’Bii’cii) is controllable-observable. ri
From the solution obtained above, it is clear that the optimal )
finite-dimensional compensators are not Kalman filters, and hence the earlier Q?

results [30-34] on filtering and control of linear stochastic singularly
perturbed systems do not apply here. A number of important questions now arise:
What is the limiting structure of these finite-dimensional compensators as
the small parameters go to zero? Does the full order compensator decompose
into a number of decoupled low-order compensators? Does the resulting limiting
structure offer any computational and/or implementational advantages? Is it
pqssible to obtain a near-equilibrium solution based on the solution of low-
order probiems as in the deterministic case [15,16]?

It 1is our intention here to answer the above questions: Specifically
we shall show that the multimodel solution is the asymptotic limit of the
exact solution as the small parameters go to zero. To obtain the multimodel
solution, we first need to derive the simplified model used by each decision

maker.
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3.3. Multimodel Generation

DMi arrives at his simplified model by neglecting the dynamics of
the j~th fast subsystem and the weak interactions between the two fast

subsystems, i.e., by setting ¢.,=0 on the left hand side of (3.1) and

b

i 522==0 in (3.1). The steady state dynamics of the j-th fast subsystem

is then given by the algebraic equation

)4 p w +/e Lw). (3.22)

- - - -1
25(e) = ~Aj (A7, " ¥ Byyugtvey Ly

3

The above expression for Ej(t) has been shown to be valid as input to slow
systems [31]. Therefore, substituting (3.22) in (3.1), (3.2) resulcts in the

following simplified model for the ith decision maker,

s oW, L) W L s a1t P D 0y=z . (3.230)
o o o o 00

o] oi™1i is 3 i1 o
(1) (1) (1) . (1) -

SN Aiozo -l-A.iizi -+Biiui+-/2; Liw, z, (0) 2.5 (3.23b)
;}; . The observation vectors for the two players are given by
S (1)
it c 0 z
SR yii) =| ot % | * vy : (3.24a)
E . 0 Cyll3
AR
SIS
N T (1) 1)
X = + . .
_:{ - yj stzo Djsuj + vjs (3.24b)
fﬂi ;:
—— Notice that in the above simplified model used by DMi, the two decision

makers do not interact at the fast subsystem level, but interact only at the

slow subsystem level. Therefore, to obtain the multimodel sclution,DMi needs

ro

only to know the parameters associated with the model (3.23), (3.24); an
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exact knowledge of the full model (3.1), (3.2) is not required. The multi-
model solution is then obtained by solving three low-order problems: two
independent stochastic control problems for each decision maker at the fast
subsystem level; and a constrained stochastic Nash game at the slow subsystem

level.

3.4. Weak Limit of the Fast Stochastic Variable

Before we formulate the low-order problems, we would like to
establish the "weak" limit (limit in the sense of distributions) of the fast
stochastic variable which will be shown to be the wvalid limit for substitution
into the cost functionals. The formal white noise limit (3.22) is not valid
for substitution into the cost functionals since it gives rise to some ill-
defined terms like the integral of the variance of white noise [31].

The following results are needed:

Lemma 3.1l: Let £(t) be a function satisfying the following conditions

1) £(t) 20 for all t

11) [ f(t)de=1.

Then the following distribution convergence is obtained,

Um & £(e/u) = 8(e).
=0 ¥

Lemma 3.2: Let z(t) = f eA(t-T)/uI.dG, where w is a Wiener process with
o

E{dw(t,)dw(z,)} =Ws(t,-7,)dr. Then, lim z(t) =w "weakly" for each t > 0, where
w is a constant Gaussian random vector with mean zero and variance W which

satisfies the equation

P - a e o PO PR U G Y WP
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AW + WA' + LWL' = 0.

Setting ., = 222-0 we rewrite equations (3.1b) as

11

e dz, = Aiozodt+-Aiizidt1-Biiuidt4-/E; L dw (3.25)

where w is a Wiener process such that “=w. The integral representation of

equation (3:.25) can be written as

Aiit/ei _1_[ eAii(c-T)/ei(A em
€ o io o

z,(t) =e
i i

u, )drt

io iii

t Aii(t-T)/ei

l_ 1 L, dw (1) . (3.26)

+
S
21
A straightforward application of Lemmas 3.1 and 3.2 yields the following

O Y~

"weak'" limic

-

-

zi(t) = eli-?b zi(t) ii(Amz +B u i) + wi (3.27)

i

N I

>

where wi is a constant Gaussian random vector with mean zero and variance Wi

r

which satisfies the equation

RN I MBI

) . Al LIS

L. ‘i R I I
P

Pr——r
«

?
Auwi + "1"‘11 + Lim'i = 0. (3.28)

3.5. Slow Subproblem

The slow subproblem is formulated by setting ¢ 522=0 and

11
slt 52-0 on the left hand side of (3.1). The formal white noise limit given
by (3.22) is substituted into the state and observation equations (3.1) and
(3.2); and the weak limit (3.2) is substituted into the cost functionals

(3.4). This gives

KRS S
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. 2
os As"'c:os _+ jilnjsujs + I‘osw’ Zos (0) = 260" (3.29)
Yis © Ciszos + Disuis * Vgl i=1,2 (3.30)

Each player is constrained to use only an n-dimensional compensator of the

form
Zsi T Fiszsi + Gis[yis-ciszsi-nisuis] + Hisuis' (3.31)
The expected values of the cost functionals are given by -
E[J, |z ,] =LE(z' (DF .z (T)+ f 2! +22' Q, u
is'"si 2 os oi os ois os os 'is 1is
1 R is)d:lz tr{QiW }. (3.32)

HI s the initial conditions

i(t),t) such that

The decision makers select the matrices FIS, G*

S % . - *
zsi(O), and the closed-loop control laws uis(zs

E{J, (u}, u§s)|zsi} < E{Jis(uis,u;s)lzsi}; 1,j=1,2; 4#j. (3.33)
Applying Theorem 3.1, the equilibrium solution is found as

u:s = [Bis is'+Q;s]231 (3.342)

Ffy = A -Byq Rj (Bj js-+Q3s)[I-+(qj ji)(”bo Mbi) 1 (3.34b)

st - 1icis Los WLi)vis (3.34¢)

H;s = Bis (3.34d)

25, (0) =z (3.34e)

Y )

R |
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where Kis is the solution of the coupled Riccati equation

> ~ < W
Kig ¥ RigA FAK o+ (QuyomQ Ry Qi) ~ Ky Sy oKy ~ Ky S 1s%ys
-gﬁssjsxis = 0; Kis(T) = Foi. (3.35)
M(t) is a symmetric nonnegative definite matrix defined as,
z
os
- e et . - . a
M(t) = E{@®(t)a ()} ; m(t) 2067251 (3.36)
zos—zs2
satisfying the differential equationm,
M=FHM+MF +B @ B
s s S s's
with
- - -y
Mij(o) zoozoo + Noo H i=3=0.
= Noo 5 else. (3.37)
The expected value of the optimal cost is obtained as
* N Y ~ ey
E{Jislzsi} 5 (23 (0K, _(0)z_, (0) +er (M (0)K, _(0)}+b, _(0)]
lr - -
+-2 tr [ini] , (3.38)
where
C?ET o b, (t) -:r(}'T{[Q +K, B, JR.F[Q' +B' K, 1M, +K, B, R.T(B' K
fro is t is  is"is'"is "is  "is is’ i1 "is"js §s  js is
.':. e ? o= -1 ! =
2 i "'stmjo"'(st*stnjs)stBjsxis“oj}‘“}' (3.39)
w1

------ CAakadat
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P 3.6. Fast Subproblems

3

;é:-, The fast subproblems are "local" problems for each decision maker.
\'.;'.

:1:-' These are stochastic control problems because the decision makers do not

interact at the fast subsystem level. Assuming that the slow variables are

constant during the fast transients, we obtain

€idye = ApyZge ¥ Bygue + e L (3.40)

WAl
Vige ™ CpsPye * ey iy . (3.4
Jie = {a zif(r)rizif(r)-»-[ (z fQizif+uif 4u g)dtl. (3.42)

The optimal qu minimizing E(Jif) is obtained by applying the se;;aration

principle, so that

* o _p-ln? A
Yir T "Ry By KiE%ys (3.43)

where Kif satisfies the Riccati equation

e K,.=-K .A,,-A"K

LM 18844 (3.44)

+K,S,.K Kif(T) =T

13808 = Q ¥R Sy if } 1’

iif is the output of the Kalman filter given by

Sttt ot g e e T T e . . - . T v . S - .
'."‘-hd“‘. Y SRR TN Wy L 2 L ey Y A el o . - D - 3 . - el oDt .
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l n E1;‘15 = A2+ Byyu 1f+P1anVu [y1367Cia%ie)s 20 =2
= (Ay=S K E R Cy Y 11”11"'%1“11( AjoZgs ¥ B11u76)Ciy7 ]
’ _ = (A Sy iKeePieTyy) zif+P1fciiVi1[yii A1 Ay,
11 is(Bis is+Qj'.s)}£si]' (3:49)
P, is the error covariance of Eif satisfying
€Pig " PreAy VAP FLVLI-P TP s P (0 =N, (3.46)
Under the Assumptions (a) and (b), the limiting behavior of Eif’ Pier Kigs

and u*_ as e + 0 has been considered in [31)] and is summarized below :

if

* _ % Ve 3.47
uje ™ uif+0(ei ) (3.47a)
3 =3 40y (3.47b)
1f T %4 1 :
R, = K o +0(e,) (3.47¢)
P= P 00 (3.47d)
- - 2 - *

where Pif’ Kif’ 2.6 and Ule satisfy

- ' - t = - )
PogApg ¥ APyt LWL =Pyl i Pig= 0 (3.48a)
K 4 9. -K . 48b
Ryghy v R e +Q -KypS, Kip =0 (3.48b)

A
€2,p = (A,-5, K e-P¢ ii)zif+Pifciivii{yii+CiiAii{Ai

L ~ '
-Byy is(Bis 1s Q) 1z ] (3.48¢)

=% o _ <1 +r = 2 .
Uie = “ReBy i Kie%iee (3.48d)

.
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The expected value of the optimal cost is given by 9
-9
N T 1 = ey _
EGIp = £ er{(3 Q +K P T, IR, Mo+ 2 er (P (DT, ] Ei
--i- 0z (3.49)
2 iO 1f io’ j:
ﬁf In the limit as ¢, >0 this reduces to
?_..
J}‘ 1
¥ EQI}p) = T erl{ly Q +R P Ty 1F o (3.50)

The approximations obtained from equatioms (3.47) and (3.48) are valid only
on a subinterval [tl,t2]C:(0,T) because the "boundary-layer" terms have been

neglected.

3.7, Limiting Behavior of the Optimal Solution

The multimodel strategy pair used by the decision makers is given

by

u* = u¥_ +g* -R'l[B' K +Q;s] - Ry “lp' &

im if 1s'"is is si 11 4if if’ i=1,2 (3.51)

where gsi and gif are the states of the n - and ni-dimensional compensators

given by (3.31) and (3.48c), respectively.

We shall now examine the limiting behavior of the exact solution

|

(3.11)-(3.14). For the sake of brevity, the detailed manipulations involved

in taking the limit of matrix equations as ﬂ:il->0 are omitted.

.,
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K - Let the solution of (3.12), K, ,be of the form
]
- Kg = =X c(n? (e 51“{1)(5) Ve Kl(i)(e) ;i=1,2,
’
- % kD) ke ek §§)(e) (3.52)
b
?!I -- Substituting this in (3.12) and taking the limit as §el +0, it can be shown
; that
(i)(e) K -#0(|€H)
k§e) () =K, E, -, +0Clell)
(;')(6)-1( E.+0clklD
kD (o) =K, +0(E 1)
K{S (2) = 0lelly
xﬁ)(e) = 0(lle 1)
where A ~ - - -1

By = (S5piKig ~Agy) (Ayy 543K g)

E (3.53)

= ' - v =
1 "85051@y5 - S54Kg)

Let the solution of (3.14), M(t),be of the form

Yoo(e) M (&) My,(e)
M(e) = Mll(e) Mll(e) Mlz(e) (3.54a)

Map(e)  Mpp(e)  Myp(e)
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where each block is of the form

b4

Mgg(e) /EIMgé(e) /E;Mgg(e)
Moo = | ApE e e M@ |,
Mg (0 Mg @ M) |
e o o]
o | GO o o
@ i e e |
i Mo(e)  epli(e)  eMls(e) i
M) M) wooe) |

.........

(3.54b)

Substituting (3.54) 1n (3.14) and taking the limit as lell -0, it can be

shown that,
00
My4(e)

ii
Mii(e)

12
Mii(e)

00
Mgo(€)

12
Mao( )

00
My, (€)

M3 (o)

oo

= %, +0(llell)

P, +0(Clel)
oCliell)
Moo+ OClell)
oCiielh)
My, +0Ciel)

oclleid

= O(llell)

(3.55a)

. |
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The remaining matrices,which we do not need explicitly, satisfy

’ ) the following set of equations:
.- .
SHN 01 11 0L' vy odd i, .
- . AiOij(o) +Aiiij(0) +ij (O)Ai0+ij(o)Aii+LiWLi 0
R ii 01 v LT ay ' e

11 OL o ar o5 -pr- .

i1 0L, .., .= .
AgiMoo(0) +My(0)A4; +MgpA g+ LWL) =0

.01 i 0i' R £ S '
A Moo (®) +4, My(0) +Mys (0)AL( +My (0)AL, +L WL} =0

by 01 "M ' ' oM
AOiPif+Mii(0)Aii+M A +LWL1 M 0

= 0L, = -l =
1110+ Lo 11C0g TMi1(OICHV,C

1Fig™

=y oi ' by ' v | 0i =i~ lm 3 =
AOiPif+M12(0).Aii+M12A10+L0WL1 (M12C0j +MIZ(0)C:L)VjiCiPif 0. (3.55b)

The limiting solutions given by (3.53) and (3.55) are valid only on a sub-
interval [tl,tzlc {0,T], because the boundary-layer terms have been neglected.

Write the closed-loop system as,

. A AN
X Ax - SIKle - 82K2x2 +Lw (3.56a)
a ~ PS
xi = (Fi-SiKi)xi-l-Givi H vi-yi- Cixi; i=1,2. (3.56b)
Define
A
- %1 '
x, = . ; i=0,1,2 ., (3.57)
%2

then (3.56b) can be rewritten as,

1 8

X9 = AOOXO+A01xl +A02x2 +Gov (3.58a)
L - - - -~ -

Elxl = A10x0+A11x1+€llA12x2 +«/elcl v (3.58b)
IS — ~ -— -~ - ~ —

EpXy = A20x0+522A21x1+A22x +v €,Gy Ve (3.58¢)

- . . . S . u
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The form of the compensator equations (3.58) is identical to the form of t‘ne.

state equations (3.1). This form permits easier manipulations to obtain

their limiting behavior. g
Now, we transform the equations (3.58), in order to separate its

slow and fast components. The transformation and its inverse are:

- _ S
"o E oVENTIVENT,  NER EN, |5
“l = T, I, 0 x; (3.59a)
n T. 0 I X
| 2 | B 2 2 {2
*o Ip N VE N, "o
~ = - I .
= %, T, Il-Je- TNy e, TN, n (3.59Db)
h X2 T, Ve LwVe LNl | ™
‘ where,
e Ty ATy ~Ag-€ Ti(AOO AOLTI 02 T,) + €44 AijTj (3.60a)
; €Ny =N (A, -GC, -vE T GC, »/'ijTj (J'A -GoCy)
2 ~/-— - € -
; +Veghoy = GoCy + g (Rgg - A Ty - &g, TNV 2 ;| €14 NjAyq- 1:3=1.2;145 (3.600)

Transforming (3.58) using (3.59) and (3.60) results in;

Ly
1

1 ‘\/el y
0 +VE N Ty8 o Tn) = [N ( c+'rcc>1/_ 160, L 3¢ :
o 117 1% 27?2‘ 2%0% 752-02
- +E,N, T, 02]n2+[(10-JZINITL-JEZNZTZ)GO-Nlcl-nzc ,1V (3.61a) i
» . - =
o g M [51T1A01+A11]nl+[€11‘1 011 12]n +[eT) °+~/-1G1]v (3.61b) §
= S _ .~
- g = lepTohgrte, Aorlny +egTohgg +Ag,In, + e, TyGq +4E,G, ] V- (.61
[ 4
1 \

LR Y . - . P
I T R T T PR . B .o . L .
Fru S B b b PO, " e . Py - o . 2 < - - ——. e Aot B a3 a
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! In It can be shown that the limiting solution of (3.61) is
. - - r'_ -
. 2D : "
= | 0. = ASI + o(llell™) ’ (3.62a)
0 (2) A
_nO 4 s2
(1)] = 7
n, = rnl = “Le +0(“€“%) (3.62b)
1l n(2) =(2)
R B A
(1)) ;;1)“ v
o= | 2= |2 o™ (3.62¢)
2 n(2) z
| 2 ] | “2f |
where
(3 R T e ) T 16 ) PN~ |
egng~ = (Agy "By Ry ByyKypng™ 5 1yt (D) =24 _ (3.63)

The limiting solution of "o is just the compensator of the slow subproblem;
and the limiting solution of one component of n is the Kalman filter of

the fast subproblem. The other component of nys which is the estimate of
the ith fast state by the jth decision maker, tends to a filter based on

the a-priori information which is all the jth decision maker knows about the

ith fast subsystem., This estimate is of no use to him since his near-optimal

strategy given below does not need this information,

The equilibrium strategies are approximated as,

.*- Lot «-r"lB' B 2. -r" LY ' 12 €| %) = y* Ny,
ug =-R; ByKX, RiLB:LiKifzif R, (B Ky o +Q7 12, +OCUEN™) = uf +0(el™);

i=1,2. (3.64)

y :f The optimal expected values of the performance indices are approximated as,

DU o =t or et eang
-
[
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E{J}[X;} = %[ii(O)Ki(O)ii(O) + tr{M,, (0)K (0)} + b, (0)]

=T ex[R B ] vicl B ]+ 2Ter(Q P

1£516%41Y11C%44%4 +Wl

1V if

P

1

+2[£;i(0)xis(0)ési(0) + tr{ﬁii(O)Kis(O)} + b, _(0)] + 0(lel)

* 3J . =
= E{Jislzsi} + E{J3,} + O(kel); i=1,2. (3.65)

Equations (3.64) and (3.65) are obtained by substituting the limiting values

of Ki and M. To get (3.64), x, also had to be transformed using a transfor-

i
mation similar to (3.59).

The multimodel nature of the problem is apparent from the form of
the near-optimal strategies (3.64), which suggeststhat the ith decision
maker needs only to model the dynamics of his own fast subsystem and the
common slow subsystem,

The structure of the near-optimal scheme is similar to that of the
deterministic problem treated in [15,16], in the sense that the fast sub-
problems are control problems different for the two decision makers and the
slow game problem is common to both the decision makers. This is essentially
due to the fact that in both cases the fast subsystems are weakly-coupled and
are controlled by a single decision maker. 1In situations when this is not
true, the near-optimal solution will be quite different as has been demon-
strated for deterministic problems in Chapter 2.

The overall near-optimal filtering-control scheme is depicted in
Fig. 3.1. The hierarchical nature of the filter implementation, wherein the
estimate of the slow filter is one of the driving inputs to the fast filter,

can be seen from the figure. This arises naturally due to the fact that

i
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the innovations process driving the fast filter needs the '"fast'" output which
is generated from the actual output by subtracting out its "slow" part
formed from the slow estimate. This fact has been pointed out in [34] for

the single parameter control problem.

3.8. Conclusions

A decentralized filtering and control scheme has been presented
for two decision makers controlling a large scale system. It is shown that
in order to obtain near-equilibrium Nzsh strategies, the decision makers
need only solve two decoupled low-order problems: a stochastic control
problem in the fast time-scale at their "local" level, and a joint slow game
problem with finite~dimensional state estimators. This leads directly to a
multimodel situation wherein each decision maker needs to model only his
local dynamics and some aggregate dynamics of the rest of the system. The
advantages of using the proposed scheme are apparent. The decoupling of
solutions at the subsystem level would result in considerable computational
saving. Also since the near-optimal strategies need only decentralized
"state estimates," each.decision maker needs to construct only two filters
of dimensions n. and n,, respectively, instead of constructing one filter of

0
dimension n.+n, +n, as required by the equilibrium solution. This would

0 "1 2
result in lower implementation costs.

It is to be noted that the problem addressed in this chapter is
quite different from the earlier problems on filtering and control of

stochastic singularly perturbed systems. The earlier work focused on

appropriately characterizing the limiting behavior of the fast variable in

Ad bl et e e e e ol s i e - TP S P S ST P A S "GO PG SO NS AL W N |
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the presence of white noise to obtain well-posed lower order problems. The

aaind

high-order optimal singularly perturbed Kalman filter was shown to decompose
into two low-order Kalman filters in the slow and fast time-scales in the
limit as ¢+ 0. The problem with multiple decision makers possessing
differing observations under a multimodel situation has been addressed here
for the first time. Since the estimators for this problem are not Kalman ;1
filters, the earlier results could not be applied here. Therefore we had to

examine the limiting behavior of the particular estimator structure adopted E
for the optimal solution. The result sho;s that in the slow time-scale the -
estimator retains the same structure as the optimal, but in the fast time- :f
scale it turns out to be a Kalman filter. Furthermore, we have established
the "weak" convergence of the fast variable which is shown to be the valid

limit for substitution in the cost functionals; a fact which had not been ;l

established so far.

h -l vl
)

G - o




b
>

E-
N
o
P
k.
'

-
;:

k- 3t e e S -y

—— Y W TS TV Y YL

.......................................

Y

Y Y

Fast

Subsystem

Slow Core

v 4

Fast

- 1

A

N1

A Y

wm Yoz Y22

Subsystem
2

A

T Information
- Available to
DM-1

Information
Available to

DMm-2

+
Slow
Dis ” Filter | 1Ces| | Dzs
A { | 2 A A
2 ya
$Zs1 s2;
Slow Gain SIoszoin
GF{; _ _ i?;
‘# Y y Yy yYag 4 +1
-1 -1 . R
CuAAp CuAuBn C22Ab2B22] |Ca2h2R20
+
£
}_. * .
C Fpsf
o u Filter I ™ Filter Caz
& X 1 2 )
Pl A\
;:'.E rZ" Zuv
> Fast Fast
- Gain Gain
C . e .
v it v 7 sz

Fig. 3.1. Near-optimal filtering-control scheme.

..........
------
h) - -

\

A Al s AL A e s e Ao A .‘.J

o RV TR P . .
VPSP T I W WA o W Wiy G GOl W S [P, |




L

52

N |

CHAPTER 4

A MULTIMODEL APPROACH TO STOCHASTIC TEAM PROBLEMS

4.1. Introduction

e
oy

In this chapter we continue to study the role of time-scales in
multimodeling of stochastic linear systems. We shall demonstrate the well-
posedness of multimodel generation by "k-th parameter perturbation'" for both
static and dynamic team problems under certain quasi-classical information

structures. The weak-coupling assumption on the fast subsystems is retained.

In Section 4.2, the general dynamic team problem with sampled
observations and quasi-classical information pattern is formulated. In
Section 4.3, a multimodel solution is obtained for the static team problem.
Then, in Section 4.4, the solution of the static team problem is utilized to
obtain a multimodel solution to the dynamic team problem under the one-step-
delay observation-sharing pattern. In both cases, the multimodel solution is
shown to be well~-posed; in the sense that it is the asymptotic limit of the
optimal solution as the small parameters go to zero. The chapter concludes

with Section 4.5.

4.,2. Problem Formulation

The system under consideration consists of strongly-coupled slow Ll

core and weakly-coupled fast subsystems controlled by two decision makers.

It is modeled by the Ito differential equations
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2 2
dz, = (AgoZg +_1§1 (Aojzj + Bojuj)) dt +jfl FOjd“'j‘ Zy(tg) = Zyg

3425 = (Agq2g * ApgZy FeggA G+ Byguy) dE +Je Fydws Z,(8g) = 24

t=¢t.; 1, k=1,2; ik (4.1)

0!

where dim zo = n , dim Zi = n, and [ui(t); t= co} are m,~dimensional

i

stochastic processes denoting the controls of DMi. {wi(t); tzt,; i=1, 2}

o’
are standard Wiener processes independent of each other. The small singular
perturbation parameters € > 0 represent small time-constants, inertias,
masses, etc.; while the small regular perturbation parameters €4 represent
weak-coupling between the subsystems. The states {zi; i=1,2} are fast since
thelr derivatives are of order llei. The matrices (Aii; i=1,2) are assumed
to be nousingular.

The initial conditions are assumed to have Gaussian statistics with
known parameters which will be specified later. The decision makers make

independent decentralized sampled measurements. Specifically, it 1is assumed

that a pi-dimensional observation

y3) = C,_ozo(tj) + cuz,_(cj) + v, (4); 1=1,2 (4.2)

is avallable to DM& at the sampled time instant t, where j = 0,1, ... N-1

3

<
and By St < eee <ty < ety ” t Denote the index set of time samples by

f‘
g ={0,1, ..., N-1}. Then the random vectors[vi(j), j €g, 1i=1,2} are
assumed to have independent Gaussian statistics {vi(j) ~ N(O’Rij)’ Rij >0,
jeb, i = 1,2}, and are independent of the process noise wi(t) and the

initial conditions.

.......

.............
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To exhibit the slow and fast variables explicitly, we use the

following transformation:

To Tp=ei Ny =6 MN, - M =M1 12, -
4.3 7
M= N 1 ° 1% (4.32) '

-

le N, 0 I, z

which has an explicit inverse

Z4 Iy 1M €M Mo
Zi | = N I,-e, N\ ~e,N M, LY (4.3b)
Zy -N, B RS PUL N B )

where {Mi, N i=1,2} satisfy
AggNy = Ao = &Ny (AggmAgyNy=AgNy) +ey AN =0

My(Agg + 5gNiAg9) = Agy + e MM Ag ey (Ayg=AgsNy=Ag MM, + e MA, =0

1,k = 1,2; isk . (4.4)

The existence of solutions to (4.4) is guaranteed by the assumption
that (Aii; i=1,2) are nonsingular [15].

The transformed system and the observations of each DM can now be
written down as,

2 2
ano - (Ao(e)ﬂo +.j§1 Boj(e)uj) dt + j§1 Foj(s) dwj; ﬂo(to) - nOO
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+E@a)s n(e) = n

€25 4,k = 1,2; 1 #k;

= A N

0 -4

0"40181 492N,

= A .+, N

117€1N1804

= e Nihot 1k

" Boy™MyBys =4 My Ny Bog - M N Bog
= ByiteNBoy
©1N; Box

® Ci07C11Ny

= CyqmegCyqNyMy+eCygMy

= & CroMee . Ca g N

WhiNFot

" Foy ey MyFyy=e M N,Fy, e
= Fyyh/e N Foy

"VeiNiFox 5 1, k=1,2; 1 k.

i0

yi(j) - 610(6)110(:1) + eii(ﬁ)ni(tj) + eik(e)ﬂk(tj) + Vi(j)

je e

e dy = (A ()N, + ﬁ,_k(e)ﬂk + ﬁﬁ(s)ui + ﬁik(e)u.k) dt +ﬁi(§ii(e)dwi

(4.5a)

(4.5b)

(4.6)
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Notice that in this representation the slow and fast dynamics are completely
decoupled and further as |le||-0 (e-[elszellezzl), the system matrix of (4.5)
becomes block-diagonal. Without loss of generality, we shall be working with
the representation (4.5) instead of (4.1) and (4.2).

With respect to the representation (4.5), assume that the statistics

of the initial state vector are given by

Moo Moo 50 EiZor  VEEoe2
> = n = !
Mol ~N %= M )3 P I Jereg Iy
1 i) JeoTn '
20 20 %02 S, B, z,,

(6.7)

The reason for assuming the particular form of the covariance matrix

20 ina (4.7) is because, together with (4.5a), we get cov(n )==0(/E;) and

0’1
cov (ﬂl,nz) = Oc/elez) for all t = to If we drop the small parameters from

Z ., then the above covariance relations will hold only for t > t . outside

0 0
some boundary-layer. The results obtained in the sequel would still be true
since the contribution of the boundary-layer terms is only O(lcll). Assuming
the particula; form in (4.7) simplifies the algebra.

We now adopt a quasi-classical information pattern for this
decision problem, and follow the formulation of {36). Specifically, it is
assumed that the DMs exchange their independent sampled observations with
a delay of one sampling interval. Such an information pattern is known as

the one-step~delay observation-sharing pattern [37]. Hence, the information

available to DMi in the time interval

[tj,cj+1] is “i where °‘i = fy,_(j).cj_l} (4.8a)

. P

AmEl el
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and gj-l denotes the common information available to the decision makers

in the same sampling interval, i.e.;

Cj-l = {yl(j-l),yz(j‘l), sy YI(O),yz(O)}. (4.8b)

J

i denote the sigma-algebra generated by the information set aj

Let o 1
Further, let Hg denote the class of second~order stochastic processes
{ui(t), t= to} which satisfy the requirement that their restriction to the
interval [tj’tj+1) is ci-measurable, for all J € g. Then a permissible

N, ]Rmi, such that

strategy for DMi is a mapping v,: [to,tf] x DR(p1+pz
vi(.,ai) € H§° Denote the class of all such strategies for DMi by riN.
It should be noted that for each pair of elements in Hg x Hg, the stochastic
differential equation (4.3a) admits a unique solution whose sample paths
are continuous [38].

For each ('le P?, vze FI;), we now define the quadratic, strictly

convex cost function as

2 t
! ' f t
3y vy) = E{Ng(ep)QpeMg (Ep) +E eqMi€Q ) + [ @gogle
%o
2 ' v, 3 : )
+,I,(nQny + ugu)) defuy () = vy (6,9), i=1,2} (4.9)

where {Qif’Qi 2 0; i=0,1,2},and the expectation operator is taken over the
underlying statistics.
Then an optimai solution for this dynamic team problem is a pair

{v:ef i=1,2} such that

i’

inf fof J(v;,v,) = J(v:,v;) . (4.10)
r N r N
1 2
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Defining x'=[n'n'n!] and w'= [w!w.], equations (4.5) and (4.9)
012 12

can be written in a composite form as

2
dx = (A&x + j;1 Bjuj)dt + Fdw; x(to) = %, (4.11a)
vy (3) = Cy x(ty) +v;(3); 1%1,25 J € 8 (4.11b)

t
J(vqsV,) = E{x' (£.)Qgx(ty) +-j;f (x'Qx + uju; + uju))de|u, () = v, (£,%),

0
i=1,2} (4.12)
where
— € - - 5 - 5 5 -
AO( ) 0 0 BOi(e) r FOl(e) Foz(e)
1 1 2 1l - 1l - 1l -~
A=] 0 — A_(e) —A_ . (e), B,=|—B_ . (e)|, F=|—==F, .(e) —=F,, (e)
€ 1 € 12 i € 1i ey 11 €1 12
1l - 1 1 =2 1 A )
0 — A_.(e) — A_(¢) = B,__.(g) —=F..(e) —=F__(¢)
L €, 21077 €y 27 | €, 2i° ./g—z 21 /5522 i
C; = [Cyyle) €y (e) Ciz(e)]
g Q¢ = block diag [Qn.€)Qy 502 Q]
b7
- Q = block diag [Q;,Q;,Q,]- (4.13)
» The following assumptions are made in order to guarantee the
: existence of a unique limit, as lel +0, of the optimal solution.
Sl Assumptions:
a) Re X(Aii) <0; 1i=1,2
B b) (A;;,B ., Q) is controllable-observable; i=1,2.
L‘_‘;. Before obtaining the solution of the dynamic team problem defined by (4.10),

(4.11), and (4.12), we first consider its static version (obtained by

setting N=1) in the next section.
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4.3. Static Team Problem

In the static version of the dynamic team problem formulated in the
last section, the decision makers make noisy linear observations of the
random initial state, and do not require any further information as the
decision process proceeds. Hence, the static version can be fecovered
from the general formulation by setting N=l.

To this end, let the observatiQn vi of DMi be given as

¥y = Cyx 0 +vy ; i=1,2 (4.14)
where Vg~ N(U,Ri) and X5 ~ N(xo,zo), and these random vectors are statis-
tically independent.

An optimal solution for the static team problem defined by (4.1la),

(4.14), and (4.12) is a pair {v € Pl i=1,2} such that

i,
% %
inf inf J(V,,v,) = J(v,.,v,) . (4.15)
. 1272 17V2
r+ rl
1 2

The unique optimal solution to this problem is given in [36], and can 4dlso
be found in Appendix C.

Due to the presence of widely separated eigenvalues, the differential

equations (C2)-(Cl7) involved for computing the optimal solution are numer-
ically stiff. This renders the optimal solution computationally infeasible,
specially when the order of the system is very large. Sometimes it is

even difficult to obtain the optimal solution; e.g., when the small per-
turbation parameters are unknown, or when one DM does not have a knowledge
of the fast dynamics of the other DM. 1In such cases we need to look for
other suboptimal solutions. The multimodel solution proposed here does not

réquire every DM to have an exact knowledge of the fast dynamics of other DMs.
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Moreover, as we shall see later, it is well-posed in the sense that it tends
to the optimal solution in the limit as the small parameters go to zero.
Before we propose the multimodel solution to the static team problem,

we need the following result from Chapter 3.

Lemma 4.1: Let ni(t) satisfy the Ito differential equation
eqdly = (g gMy + Byguy) d& +/e Fydvy (4.16)

where wy is a standard Wiener process, vy is a known function of time, and
Rel(Aii) < 0. Then ﬂi(t)4nis(c) weakly as si*O, where

-1 ~
ﬂis(t) = -Aii Bii ui(t) + v (4.17)

A

and wi is a constant zero mean Gaussian random vector with variance Wi
satisfying the Lyapunov equation

i ] ?

Agg Wy + Wy Ay +Fyy Fyy =0 (4.18)

The weak limit of ﬂi(t) has been shown to be the appropriate limit for
eliminating the variable ni(t) from the cost functiomal J to obtain the slow
cost (Chapter 3).

The multimodel solution is obtained by solving the following low-

order problems.

4.3.1, Slow subproblem

This is a static team problem obtained by taking the limit as
el +0 in the original problem defined by (4.1la), (4.14), and (4.12),
2 2

W, = (4.19)
Mog = (gllgg * B Bog Uyg) 8+ T Fou &y Tos o) = Moo

PO

A |

o
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A
Yis = C10 Moo * V1 = ¥17Cyy Nyo3 1712 (4-20)
Moo ~ Ncﬁ'oo,zoo); vy ~ N(O,R,) (4.21)
t 2
- ' ' '
Js(vls’VZs) E {HOs(tf) QOf ﬂOs(tf)+ft (n05 Q0 T]Oas + i§l uis Ris uis)
0
dt|u, () = v, (t,9)), i=1,2} + I, (4.22a)
where
R -I+(A'IB )' Q @l s,,) (4.22b)
is i1 “117 N4 W43 Pig .
2 ~
Jo = (tf-to) 1231 tr (Qi‘ﬁ) (4.22¢)

Wi is the symmetric nonnegative definite solution of the Lyapunov

equation (4.18).

The unique optimal team solution to the slow subproblem defined

by (4.19)-(4.22) is given by Theorem 2 of [36]:

% A= - -1 ! - s
ugg(€) = By [¥3-CiMog=Cy1My0l = Ryg Boy Sg Tgs (8D 11,2 (4.23)

where Ss(t) is the nonnegative definite solution of the Riccati equation

S, +A,~.',ss +SAy - S, (B, +E)) S, +Qy=0; S (Eg) = Q¢ (4.264a)

Tos () = (A €1, S4"EpeSy) Tpg (835 Ty (£) = g (4.24b)
-1 J ~ ~ 5 -1 [ ’ )

Pig ™ Ryg Boy Syq [Pyg-ly Tyl - Ryg Boy Kygs 1,3%1,25 1 49 (4.24¢)

Sis(t) is nonnegative definite solution of the Riccati equation

-----------------
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;
. '
Sig ¥ 89 Sgg + 514 Ag = Syq Egg Syq Qg ™ 05 Sy (tg) = Qpes 1%1,2,  (4.24d) *1
and ‘
By = [AGEySy) By, + By (R 8, 1 1s71al3 Pyg(Bg) = 03 1,371,251 4 4 1
(4.24e)
Lig ™ Ag Lyg * Egg Syg [P gLy %] C4g - Byg Ky Cypi Ly, (&g = L5
13.1-1’2; i h| (4.24F)
. ~ A
” e - ] - - 3
Ryq [A, Eissis] Kijg = S Eg S js [P_,‘s Niszjs] cjo z ﬁ
SiSEjsKJSCjOZiS' Kio(te) = 05 4,5=1,2; i (4.24g)
E B, R >B';E =L C.L[C i +C,E,.C. +R1°L; 11,2 ;
1s = Boy Ryg Bogi 234 = Zgo Cyo [C1oRgoC10 t C1s¥13Cig * Ry 24 :
(4.24h)
3
The minimum value of J: is given by kR
o * *y e 0) M. + 0 ]
2 3y = 3y Gipgatgg) = Tgg 5,(0) g + £x (o8, (0))
F- Ce 2
# +tr(f S (t) L Fo,F Oidt) +J (4.25a) 1
& t, ° 1=l ]
. where ]
- t 2
b - £ 1)’ (i) @' (1) 2)' (2)
O Ins = EF f Lz (AOS 2 Ais Ay Ai.s Ais" Ry
E.?' to i=] J
r‘ -
=
x +Sg Ejg S, W)l dt (4.25b) ',j
i with
& ]
-
L& 1
=
b — e — . o
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(1) - A o=l ! -
Aog” (8) = Byg Cio™Ryg Bos Sg 5

i,3=1,2; 1 # §

A(i)(:) =P +R;: B,

is S_V

0i “s is’ i=1,2

-1

1) - ! . =] 2.
A’ (®) Ryg Boy Sg Vigs i1,j=1,2; 1 # 3

A e

Vis " Ap Vig *Eg Sgg |

1,j=1,2; 1 # j

ws = A0

[ ] ]
Wg ¥ W, &g + Foy Fop + Fgp Fpp =

@b = A

o %03 Fpltgetyd = I

4.3.2. Fast subproblems

~ -1
S (Lis + L s,‘) +3Ris B

0

3 Wa(tg)

o1

s, ¥y (t,t);

PieLyglial ~ Byg Kigi Vig(Eg) = 0

=0

(4.26a)

(4.26b)

(4.26¢)

(4.26d)

(4.26e)

(4.26f)

These are stochastic control problems for each DM (i=1,2), which

are defined by the state equation

€My = Ay Myp + Byy uge) dt +/ey Foy dwy; My (ED= Ty

the initial state measurement

A
Yig ™ C4aMio * V4 = ¥4 = S50 Moo

(4.27)

(4.28a)

(4.28b)




64 5

and the cost functional -

' t 1 '
Jyg Ogp) = ElsMya(en) Qe (Ep) + [ tf MygQeMlye +ugpuygldt|u; (€) =
0

vig(taay)l. (4.29) =

The unique optimal solution to these static control problems is given by

* ' A - - 1 -
ug (k) = By Sye ¥y(tt0) pp {yy-Cigllag=CoqMygl = Byy Sie Mygle) s (4.30)

where Sif(t) is the nonnegative definite solution of the Riccati equation

. [} L
€4S5¢ "AyiSse = Syghsg = Q *Sy6ByyBiyS1e S1e(e)” Qg (4.310)
Yif(t’to) is the state transition matrix of the system
.
Sqllyg(®) = (Agy=ByyBigSie) Nyg(®)i Nyg(®e) = Nyo (4.31b)
and
A 3
Zig "Iy Cu (Cio 00 C10 ¥ C1g E44 Cqg t Ri) (4.31c) ]
The minimum value of JIf is given by ﬂ
* u 0¥y = T 0) T, + 0
Jyg = Jyg(uye) = e Ny S50 Nyg +eytr EyyS,,(0))
t
£ 1
+ tr(}t’ SifFiiFiidt) +J (4.32a) J
0
where
t
i (1) (1) @' @ ' .
Tne ~ ¥ {Jt Mog” Egg TALE Age Ry ¥ Sig By Byy Syp WpdE) 1
0 L
(4.32b)
]
]
RV T T A S P ST T
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with
i -
ASE (€) = 28]y 8¢ By (5,80) = By Spp ¥yg (BatQ) Tyg Cgy) (4.332)

A(")(e) = -3’ (4.33b)

11 S1e & (E0tg) Ty

1 i (t, to) ii 1 (t to): Q (tosto) (4.33c)

Under Assumption b, Sif(t)--'-§if as g, + 0, where S is the unique

i if
positive definite solution of the algebraic Riccati equation

] - -— - . - -
Ayg Sip +S;g Ay +Q =S By Byy S4 =0 (4.34)
* -k
Also, Jif" Jif as g, = 0, where
tf ' 31 . .
Tgp = tr d't Sie Fyq Fiq d6) + T, (4.35)

- 1 i -
and Tng is Ing with S;¢ replaced by Si¢.

The optimal control u;f(t) tends to sz(t) as 514-0, where

e d* -
uif(t) is uif(t) with sif replaced by si_f.
The multimodel strategy pair {uim(t); i=1,2} is formed by combining

the optimal strategies of the slow and fast subproblems.
%* —e
uim(t) = “is(t) + “:l.f(t)
- A - -
= [Py, (t) = By; Sy¢ ¥;e(tst0) Igpl [yy=Cig Ngg = Cyg Mo

-1

- Ris O:L Ss 11Os (e) - Bii Sie nif(t) (4.36)
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The following proposition now establishes the well-posedness of
the multimodel solution.

Proposition 4.1:

a) u”i‘(t) = uim(t) + 0(hel); 1i=1,2; te [tl,tzlc [co,tf]
-t
J

* %* -
b) J N T odlell).

Proof: See Appendix C.

4.4. Dynamic Team Problem

We now obtain the solution of the dynamic team problem formulated in
Section 4.2. This is done by first eanlarging the strategy spaces of the DMs
so as to formulate a new team problem whose optimal solution cap be obtained
more readily. The solution of the original problem is then obtained from the
solution to the new problem.

The new team problem differs from the old one in the information
patterns of the DMs. Specifically, the new one is defined by replacing aj

i
j P~

and ¢ -1 given by (4.8), by Ei and ;j_l,respectively, where

3

ai = {y, D, Ej-l} (4.37a)

o

Cyop = (8yps w1 (8)s wp(e), £ e} (4.37b)

W -y |

[P
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Under this new information pattern, the DMs also have access to each other's
control values used during all past sampling intervals. This information
pattern, though not of much practical importance, is mathematically con-
venient for obtaining the solution to the original problem due to the

following fact [36]:

min min  JE,v,) =mlo @l IO, ' (4.38)
r N N 'T N 'r N
1 2 1 2

where r1N and f2N arae defined analogous to r1N and er respectively,
but under the new information pattern.

For each {'\Tle F?, 326?2}, the implicit equations

v{ (a,i) - ui(w); 1=1,2; § = N-1, ...,0. (4.39)

can be solved recursively for [ui(m), J = N-1, ...,0; 1-1,2} as_ functions of
{qi, j=N-1, ...,0; 1=1,2} because of the nature of the information pattern.
Then the resulting functional relations provide a pair in r1N X réN, and a
unique one since the stochastic differential equation (4.5a) admits a unique
solution in each sampling interval. In fact, there exist uncountably many
pairs 1n‘F1N X 2N corresponding to a given pair in TIN X FZN; equivalently,
a palr of strategies under the original information structure has several

representations under the new (enlarged) information pattern [10]. In

[36] one such representation in FN
1

to derive. Then implicit equations of the type (4.39) are solved to obtain

XFg is first obtained which is the simplest

the desired optimal team solution.
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The optimal solution to the dynamic team problem involves
solving an appropriate static team problem with respect to the
current outputs, within each sampling interval. The shared information
affects the statistics of the initial st;te at the beginning of each sampling
interval. The computational problem worsens, since now we need to solve
a set of stiff differential equations in every sample interval. Hence, a
suboptimal solution without such numerical stiffness will be much more
desirable in the dynamic case.

The multimodel solution, which is one such suboptimal solution, is

obtained by solving the following low-order problems.

4.4,1. Slow subproblem

This is a dynamic team problem obtained by taking the 1limit as
el +0 in the original problem defined by (4.11)-(4.13).
t

The state equation for this problem is given by (4.19), the cost

criterion by (4.22), and observations by

T34 (1) = Cyllog () + vy (1) = 7,1 = €y (&)

i=1,2; j€ @ . (4.40)

~ The optimal solution to the slow dynamic team problem under the new
information structure (4.37) is given by [36],

~

% ~ A A A A
vis(t’ai) - Pis (t) [Yi(J)'CiOTIOS (t'J-) = Ciinis (t?)]

-1_+
-RisBOiSSWOS(c’t

j)ROS(tj) 3 1=L,2; tefry,ty,)), je 6. (4.4

SPAPP U L TN W QT PRy T oy 1y AT DRI PUE P ha

RO SRPSR SSUR S

TN

WY A |

o]
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where
"oé("‘j) - (A-Elsss-zgsss) ¥og (E58)5 £ € [E,E,1)5 ¥o (€,t,) = 1.(4.422)
A -1 ., 2 T T T -1 ., 7 . |
Byg(6) = Ryg Boy Sy [PygmIye By (D] = Ryg Bog Kygs € € 1E50%50) 5
1,k=1,2; L £ k; JE0. (4.42b)

Pis - [AO-Eissis] Pis + Eis [Kisﬂisl'kszis(j)]; €€ I:':.1":_1+1); E;:I.s(':;])-o"
i,k=1,2; Lt ¥ k; jE€ 6. (4.42¢)

& - - - e = A - A -

Lyg = Aglyg?EiaS1g [PygligRyg (D] Cyg By Ky Croi € € [£4585,)5 Ly (8))"T;
i,k=1,2; L $k; § 6. (4.42d)

ol - ' - - - - - - A - p— ‘_ A -

Kis - -(AO-Eissis) Kis-sisgkssks [Pks-Liszks(j)] ckOZis Q) + sisEkszsckais (3

t € [tj’t_ﬁ-l); Kis(tj-i-l) =0; 1,k=1,2; 1 # k; j € 6. (4.42e)

Sys ™ “AgS1g~Sighg™ T Si1g Efg Sygi T [yt ) Sy (6y) = S (85 )

i=1,2; € 8. ' (4.42£)
- T A, A F AL ~ . -1 .
Z1414) = Bgo(t]) Cqq [CqoRqo(t7Cog *+ Cyy Wy Cgy *Ryyl
i=1,2; § = 9. ) (4.42g)
ﬁo; tp = E[TIOS(t,_)|cJ_1]; je e, (4.43a)

cov (log ), Ty (&) = Zge7); 1 € 0. (4.43b)

................ : . j
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.
A

A
Tos ™ Agllgs + ByUjg * Byuygs t € [tj_l,tj); i=1,2, ...,N, \

ﬁOs(tO) = Too

(4.44)
A - A A A 2 A A P
nos(tj) Tlos (t‘j-) + KS (j) [Y(j)'conos (tJT) '151 Cii nis (t'j-)]
. 1 )
ﬂis(tj) - -Aii Bii uis(tg); i=1,2,
fbo(to) =Zyp5 171,2 ..o, N , (4.45)
- - A -
Zgo(ty) = To(t]) - Kg(d) Cp Tgp(ty )
A - , - , 2, it AL -1
Kg(1) = Zqq(F3) Gy [Cq Zgq(t]) Cg + B Cyq Wy Cyy +Ry1 T
A' Al ]
Co ™ [c10 Czo]
> (4.46)
A
Cy; = [c11 0]
A ] |
C,p = [0 c22] . )

The unique optimal solution under the one-step-delay observation sharing

pattern is given by

* A A Ad Al el . | Ase
V1g(E0y) = By (8) 17, (8)Cygllgg (67)=CyMlyq (EPIRyg Boy Sg ¥oq (EE Mgg (57 ;
i=1,2; t € [tj’tj+1>; je 6, (4.47)

A Ade
where ﬂ;s (t), ‘1'11s (t) are the solutlons of (4.44) with uis(t) replaced by

%
vi.(t,di).
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4.4,.2. Fast subproblems

These are stochastic control problems with sampled observations
for each DM (i=1,2). Each one is defined by the state equation (4.27), the

cost criterion (4.29) and the observations

Cii'ﬂif(tj) +Vi(j) = yi(j') -

yig(d) = eionOs(tj)'eiiﬂis(tj)i
jeoq. (4.48)
The unique optimal solution to these control problems is givea by
g ® = Bl E, L ¥ (et (g + Koy )-8y, ey Y, o)
-cﬁﬁzf(t])]] ;t € “j"j+1)‘ jeb. (4.49)

where E;f is the.unique positive definite solution of (4.34), and

ey ¥yg (65)) = (Agy=ByyBIiS, o) ¥yp(taty)s €€ Leguey ) Y1eC e, o)

+ B u

14%g5 t € (€

); J€1,2, ...,,N ; \

A f A Y%
ellye ™ Aylle 3-17%3

ey =Ty

A
ﬂ;’f(tj) nifa:-) +1< () Ly ()= on(,s(t ) =Cy 4 (E7-Cy inif(c )1, p (65D

]

2 A Ay -1
Re(D) = Zy,00y [Cf0gCio * Cyf146iy +Reyl s 170,

-~ , A “' ~ , _1. .
Wy gy 1C3f00(E7)C1g + CygWyCyy RS L2, LN
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Remarks: Notice the sequential nature of the slow and fast sub- -4

POV S - - - PR LT . L . R G Y G Y T o - b B i

problems. The parameters associated with the solution of the slow sub-
Ade Ade -

problem, namely, nOs (tj), Tlis (t:j), and Zoo(tj), enter the solution of the

fast subproblems. This is in contrast to the static problem of the pre-

vious section where the slow and fast subproblems were independent. This

interesting feature, which is due to the dynamic nature of the problem,

has been noticed elsewhere [34].
The multimodel strategy pair for the dynamic team problem
[vim(t,ai); i=1,2] is formed by combining the optimal strategies of the

slow and fast subproblems
@ * * i 52
== . =
Vin(ts i) vis(t,ai) +uif(t), 1,2 . (4.52)

The following proposition now establishes the well-posedness of this

multimodel solution.

Proposition 4.2

*
a) vy (t,Oti) = Vim (t,c:i) + 0(lell); 1=1,2 ;

e S leg,t ) S lene 005 3€ e

b)  JOTwy) = I (V,.va,) + 12 T @p +0diet). 8
n]

Proof: 1If we let ‘L

A A A A
x -{x(')x]'.x{} ,
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where
A A * * .
x = Ax + Byvile,o,) +Bzv2(t,cr.2), te [tj_l,cj) ,
A -
x(to) = xo; j'l’ -ot,N

A A A A
X(tj) = x(t?) +K{J) [Y(j)'Cx(t‘j‘)] .

Z(e) = ATHA'HF'; € € [ ,,t))
% r Z'(to) =20; j-1, ...,N

Zeep) = Eeep) - K(j) CE(tT) .

3 3

> ™ ' - [] -1
' K(i) Z(tg) C [CZ(tj) c +Rj]

Rj = diag (le,sz)

y (1) = [y, y(DI'; 1=1,2, ...,N

C= [c’l,cél !
then it is straightforward to notice that

. atk “%
3 xo(t) » ﬂos<t) + O(HEH)
s
b €
]
s % -1 %* D% .
2 ¥1(8) = =Ayy Byy vig (E,@p) + T (€) + OGieil); 1=1,2

'~.w

L
.";,.“_.'.A R - . L o L :‘A‘. o L o o PPN
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The rest of the proof is analogous to the proof of Proposition 4.1 and is
therefore omitted here.

The approximation in (a) is valid only on subintervals of the
sampling interval due to the fact that we have neglected the boundary -layer

terms.

4.5. Conclusions

We have obtained multimodel solutions to LQG team problems under
the static information structure and also dynamic information structure with
one-step-delay observation-sharing pattern. In both cases the multimodel
solution is shown to provide an arbitrarily close approximation to the
optimal solution.

The advantages of using the multimodel solution are apparent.
Instead of solving one large-dimensioned team problem which is numerically
ill-conditioned, the DMs need only solve one low-order team problem, which
does not depend on the small uncertain parameters, and two low-order control
problems. These control problems can be solved independently by each DM.
Hence, each DM need not know the parameters associated with the low-order
control problem of the other DM. This implies that the multimodel solution
is robust with respect to modeling errors on the part of each DM; a very
desirable feature in large scale system design.

The results of this chapter again demonstrate the richness in the
modeling structure with multiparameter singular perturbations in the context
of multimodeling problems. The limit of seemingly complex integro-

differential equations associated with the optimal solution has a nice
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appealing structure when rearranged and interpreted as a multimodel
solution.

Here we have assumed that the sampling period is fixed and
predetermined. If we make the sampling period T a function of the small
parameters, such that T(e)+0 as el ~+0, then we would not have been able to
preserve the one-step-delay observation-sharing pattern in the limit, because
the observations become continuous. One way to get around this difficulty
would be to make separate observations of the slow and fast variables and
let the sampling period of the fast observations be a function of €.
Apparently, this should cause no problems in the asymptotic analysis because
the fast subproblems would become continuous stochastic control problems in
the limit as lel +0. But it is not clear whether the slow dynamic team
problem would reqﬁire the sharing of the sampled slow observations alone.

Of course, in such a case, one will first have to formulate appropriately
and solve the dynamic team problem with multirate sampled observations.

From practical considerations, our approach here should cause no
problems because the small uncertain parameters are nonzero. This means that
in practice the fast variables are not infinitely fast but have a finite
bandwidth, and one can always choose an appropriate sampling period from

physical considerations.
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CHAPTER 5

U & |

MULTIMODELING IN MARKOVIAN DECISION PROBLEMS

5.1. Introduction
’ In the previous chapters we have examined multimodel solutions for
two-time-scale systems modeled using multiparameter singular perturbations. ;
In [43,44], the theory of time-scale decomposition has been extended to
probabilistic Markov chain models where 'slow' and 'fast' eigenmodes

correspond to 'weak' and 'strong' transition probabilities. This chapter

focuses on obtaining near-optimal policies for controlled Markov models *

consisting of N weakly-coupled groups of strongly-interacting states. A

hierarchical algorithm, which allows for multimodeling on the part of the
decision makers, is proposed for computing these near-optimal policies.

The existing results on Markov games [65] do not provide us with a
sufficient background to address the multimodeling problem directly. For
this reason, we begin by formulating the general N-person average-cost-per-
stage problem with state information in Section 5.2. 1In Section 5.3, the
optimality conditions for stationa:y.FeedbackNash and Stackelberg policies

are derived. The computational difficulties associated with the feedback

policies are discussed in Section 5.4. 1In Section 5.5 we consider

‘I [
B et
v

L
)
'y

Stackelberg problems when the leader, in addition to the current state of

the process, also has access to the followers' controls at every stage

\
s
1

.

{48-50]. An efficient computational algorithm is proposed for computing

{8 el 2

. LA AR
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incentive policies which help the leader to achieve his global optimum. E
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In Section 5.6, we propose a hierarchical algorithm for computing near-

optimal incentive policies for weakly-coupled Markov chains, which allow

the 'local' decision makers to use multiple simplified models. Section 5.7

illustrates the well~-posedness of the multimodel solution through a

numerical example. Finally, the chapter concludes with Section 5.8.

- 5.2. The N-person Markov Decision Problem with State Information

Consider a finite state Markov chain x_, t=0,1,2,... with state

t’

space {1,2,..,n}, and controlled by N decision makers with decision

[ variables {u:, 41,2,..,N}. The transition probability of the Markov chain
at time t depends upon the decisions {u:; 4=1,2,..,N} chosen at t. Thus,
t t .
prob (xt+1|xt) prob (xc+1|xt,u1,.,uN). x,_ is observed at each t and
{u;; £~=1,2,.,N} may depend on it. Hence, we are concerned with feedback

strategies {v;(x(c));jsl,Z,.,N}. 1f xt=i, then any decision {u: € U‘(i)
4

m
cR “; 4=1,2,.,N} may be used. A stationary strategy is any element
\)Er; v = {vz’(ul(l),uz(z),---»uz(n))erz’ U‘z(l) X UL(Z) X. .XU‘(H),
#=1,2,.,N}, T = {FL; 4=1,2,.,N}. 1If xt=i, and {u‘(i); 4=1,2,.,N} is used

then

Pij(ul(i),.,uN(i)) = prob {xt+l=j|xt=i}

where Pij(ul(i),..,uN(i)): U'(i) X Uz(i)x..xUN(i) - R are such that

For {vLEFz; 4=1,2,.,N}, P(v) denotes the nxn transition probability matrix

T T
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{Pij(ul(i)"’uN(i)}' Note that the i-th row of P(y) depends only on

u(d) = {u 1), 9D}

Over the long run, each decision maker incurs an expected cost

Auhiaas oo v WP |

per unit time given by

1 T
Jz(v) = :fﬁ;;:i E g f‘ (xt,ul(xt)”,uN(xt));t=l,2,.,N . (5.1)

The following assumption will be in force for the rest of the chapter.

Assumption A: 3
1) The admissible decision spaces U‘(i) are compact.

2) The P,.(-) are continuous functions.

ij

3) For each i, {fz(i,°): Ul(i)x..xUN(i) - R; 4=1,2,.,N} are continuous
functions.

4) For each ye€I', the Markov chain X, is strongly ergodic.

Assumptions A2 and A4 imply that for each V€I', there is a unique probability

row vector m(y) = (nl(v),.,nn(v)) such that

mesnttioniclieceendescho, aadindd ahakid o

v LR o e
I s
.

Aada

m(v) = m(v) P(v); m(v) >0 (5.2)
furthermore, n(yv) is continuous.
It can be shown [39] that Jz(v) does not depend on the initial

state and is given more simply as,

J‘(V) = ﬂ(v)Fz(V); L=1,2,.,N (5.3)

R P SRR

where

F,(v) = [f‘(l,U(l)), fz(2,0(2)),--,f‘(n,u(n))]'
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Futhermore, Jl<v) is continuous by Assumption A. It is convenient to

introduce the generator
Q(v) = P(v)-L .

Then,Q(v)1 =0; 1 =(1,1,.,1) ’ and m(v) is the unique solution of
o

m(v) Q(v) = 0, nr(v) L= 1

The following result is well-known [39].
Lemma 5.1:

Let Assumption A hold.

(5.4)

For vé[ consider the linear equations

agly = QWC, + F ()5 o €R, CER"; 4=1,2,.,N (5.5)
1) 1f {d‘,C‘; 4=1,2,.,N} is a solution, then a, = J‘(v).
ii) 1f {dl’cl; 4=1,2,.,N} is a solution, then so is {Qz,cz+61n;
4=1,2,.,N} for every §.
iii) A solution always exists.
Let Qi(v) be the i-th row of Q(v). It depends only on u(i). For any C‘
let
HL(CL’V) = Q(v)C‘ + F‘(v); 4=1,2,.,N (5.6a)
i
HJ(Cz,u(i)) - Qi(u(i.))c‘t + fl(i,u(i)); £4=1,2,.,N (5.6b)

- L.
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5.3. Optimality Conditions for Feedback Nash and Stackelberg Strategies

We shall obtain the optimality conditions for the case N=2 only.

The optimality conditions for N > 2 can then be obtained in a straight-
forward manner.

Assumption N:

i) Ul(i) is convex; i=1,2,.,n; £=1,2.

ii) For any C Hi(CZ’u(i)) is strictly convex in ul(i); i=1,2,.,n;

Py
£=1,2.
Assumptions A and N guarantee the existence of the Nash solution.
For the Stackelberg problem we shall assume that DM-1 is the
leader and DM-2 is the follower. The following assumption together with

Assumption A guarantee the existence of the Stackelberg solution.

Assumption S:

i) Uz(i) is convex; i=1,2,.,n.
ii) For any Cz, H;(Cz,u(i)) is strictly convex in uz(i); i=1,2,.,n,

Let us consider the Nash solution first. For any (Cl,Cz) define

R, (0),¢) = (§, (v, (W BLCLu, (1,5, (1))

. :
= min H(CLu,(1),u (1))
w (DU (1) KAk
upd) = Koy (1),6); 4k=1,2; 4k; 1=1,2,.,n. (5.7a)
N:(CI,CZ) - H;(Ct,ui(i),u;(i)); i=1,2.,0; 4=1,2 . (5.7b)

The following theorem gives necessary and sufficient conditions satisfied

by the Nash pair.
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Theorem 5.1:
% *
Under Assumptions A and N,(vl,vz) is Feedback Nash iff there
* *
exist {(az,cz); £=1,2} such that

*1 =N C* * (C* * *
sz n L( 1)02) = H'c z’\’l)vz)

* * %
Moreover, a, = Jj(vl,vz) s 41,2,
Proof: Follows from Theorem 3.4 of [39] by holding vy fixed in DM-2's
optimization problem and vice versa.

We now consider the Stackelberg problem. For each announced
strategy v; EPI of the leader, the follower determines his response by
The set of all such solutions

minimizing Jz(v ) over I'

1’V2 2°

o o
R(vy) = {v, €T, 1 Jy(vy,v)) Smin 3, (vy,v)] (5.8)
v, €T
2 2
is known as the Rational Reaction set of the follower. Assumption §
guarantees that R(vl) is a Singleton, and therefore, we have the unique

*
mapping R: vy "V, A strategy v Gfi is a Stackelberg strategy for the

leader if

* *
Jl(\)lsavl) < JI(VI:RVI) H Y Vl Erl . (5.9)

e gyey
. .

* *
The optimal strategy for the follower is vy € Rvp- For any (Cl,Cz) define

«
» .
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B, (1),6)) = {8,(1) € Uy(1): By(Cppu; (1),5,(1))= min . (1)u2<c2,u1<1>.

u, (1))}

=i
w2 (1) = arg min al (C;,u,(1),R"(u,(1),C,))) '
Y1 4, (1) €U, ) 111 1 2 1

(1) = K @0),c,) ]

1 1
$4(C;,C)) = Hz(cz,u:(i),u:(i)) ;  i=1,2.,n; #=1,2. (5.10)

Shtiod

The following theorem gives necessary and sufficient conditions satisfied ;

by the Stackelberg strategy.

Theorem 5.2: 3
* % *

Under Assumptions A and S,(vl, v, = Rul) is Feedback Stackelberg

o
* _* 1
1££f there exist {(qz,C‘) ; 4=1,2} such that

*1 C %* ;
a‘ = § (c]"cz) H ( ‘:Vl,vz) ]

o

* * * :

Moreover, @, = Jg("r"z) ; 2=1,2, 1

Proof: 1) Sufficiency: ;

g

Let there exist {(qz,cz) ;  4=1,2} such that 4

XY *1 =S * c* * o :
_- Q‘ n Z(cl’ 2) H (Cl’vl’ Vz)
“: then, K
* % * % * * * % % ]

rr(\al,vz)a"e oz‘ = rr(vl,vz) “;(Cz"’l"’z)

* * * %
= "(Vls Vz) Fz(vli Vz)

ek

- * %
J‘(Vllvz) .
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For any v, EFZ,
* * * * * %
TT(VI’\)Z)CYZIB _<_ "(Vl,\)z) HZ(CZ’\)].’\)Z) = JZ (Vls\)z)
* * * *
Hence, o, = Jz(vl,vz) < Jz(vl,vz) .
For any Vi EFI, let

R(vy,Cy) = [R-(u;(1),6p), B2 2),6)),. 0B (u,@),C)]" = Ry,

* *
"(vl’va)alln's n(vl,va) Hl(Cl,vl,va) = Jl(vl,va).

Hence,

% - * % * * R
al Jl(Vls\)z) Jl(\’lpR\)l) < Jl(\)l’ Vl)

* *
= (Vl’“z) is a Stackelberg pair.
ii) Necessity:
* k %*
Suppose (vl,v2 = va) is Stackelberg.

* C* .
Let {(2,,Cp) ;  4=1,2} solve

*1 - * * % * % =X * % %

Therefore,

* %* %
az = J‘(\)l,\,z) .

Let \)1 Erl, Vv,

~ *
y = R(vl,cz) = va be such that

C* * % *
Hy(Cpovpavy) = 5;(C15C)) < oqly

Therefore,

* %*
Jl(\)ln\)z) - TT(\JI’VZ) Hl(cls\)l’\)z) < Q’l

G PP
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% * %

Since oy = Jl(vl’v2)’ we should have equality above. Hence,

* % *

ﬂ(vl,vz) [sl(cl,cz) - qlln] =0 ,
Since n(vl,vz) > 0 by Assumption A4,we have
* * *1
§1€156) = ¢l

Now, for the follower,let v, €[, be such that

* * _ * C* *)
Hy(Cpovpsvp) = 5, €6 sy

Therefore,
* * * % *
Jz(\’ly\)z) = TT(VI:\)z)HZ(Cz’Vl,Vz) < @ .

* * %
Since o = Jz(vl,vz), we should have equality above.

Hence,
* C* C* *1 =0
n(\)l’\’z)[sz( 1° 2) - 0'2 ﬂ] .
. .
Since n(vl,vz) > 0 by Assumption A4, we have
* % *
Sz(Cl,Cz) = 021

n

Although the above theorems have been proved under the strong
ergodicity assumption, it is believed that they hold even when the Markov

chain is simply ergodic. The proof for the necessity part without the

strong ergodicity assumption will be more involved.
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Let us define,

1
£5(€1Cp) = min §,(C;,C))

- i
§,(C;,C,) = mix 54(C15C,)

i
n,(C,;.C,) = min N,(C;5Cy)

- i _ .
Nj(cl’CZ) = max Nj(cl’CZ) H £4=1,2; (5.11)

i
then the following hold:

Lemma 5,2:

For any (Cl,Cz) let (vi,v;) be such that
0o o
Then,
(C,,C.) €J,(v,v0) €5,(C,»C.) ;  4=1,2
-SL 1, 2/ = z \’1’\)2 - ‘e 1’ 2 ’ Ayl o
o o -—
(vl,vz) is Stackelberg if .§£(C1,C2) = SL(CL,Cz) ; 4=1,2.
o o ) -
I£ §,(C},C)) = 5,(C,Cy) = 8,(C},C,) = )]y H,(Cyvpsvy)

then (vi,vg) is Stackelberg by Theorem 5.2.

Lemma 5.3:

o o
For any (Cl,Cz) let (vl,vz) be such that

B P

T~ v
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= o ° . =
Nz(cl’cz) HL(CL’\)].’\)Z) H & 1,2 .

Then,
N.(C,,C.) < J,(v,0) <N,(C.,C.) ; 41,2
Ny€10Cp) =, 0p5v) s N(€1.C) 5 2.
° 0y is Nash if N,(C,,C,) = N,(C,,C
(\)lsVZ) is sh 1 =p\102 £( 1’ 2)'

Proof: Similar to that of Lemma 5.2.

Notice that unlike the control probiem [39], we cannot bound the
optimal costs (J: ; 4=1,2) in the Nash and Stackelberg problems by the
quantities defined in (5.11). This fact makes it difficult to obtain
computational algorithms for the multiple decision maker problems along

the lines of control problem [39,40], as we shall see next.

5.4, Computational Aspects

One way to compute the Feedback Nash and Stackelberg policies is
to deal directly with equation (5.3) of the cost function. The Nash
solution can be computed by obtaining the point of intersection of the
reaction curves. The Stackelberg solution can be obtained by applying
the algorithm of [51] for static problems. A serious drawback of this
direct approach, which makes it computationally infeasible, is that we
first need to obtain the steady state distribution m(v) as a function of
v €. This is very difficult in practice when the Markov chain is of very
high dimension and the admissible control sets Uz(i) are uncountable.

An alternative approach which does not involve computing n(v)

is to work with dual variables cz and make use of the results of
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Lemma 5.1, 5.2, 5.3 and Theorems 5.1, 5.2. The policy iteration [52] and
dual variable iteration [39,40] algorithms for the control problem also
involve working with linear equations of the type (5.5) rather than
computing m(v) and dealing directly with (5.3).

Let us consider the Nash problem first. For any (CE’C:) we find
vt and vg from(5.7a) and Nz(ci,c:) from (5.7b). We need to update Ci
such that

- k _k k k .
Lim [N,(C),C,) =N ,(€},C)] =0 5 s=1,2.

k—o

Then, in the limit,we obtain the Nash solution by Theorem 5.1

and Lemma 5.3. Since we cannot bound J: by E; and.gz at every iteration,
the algorithm of [39] cannot be used to update Ct and Cg. If we do use the
algorithm of [39] to update the dual variables, then convergence cannot be
guaranteed. But, if the algorithm does converge, then the convergent point
is the Nash equilibrium.

If it is known a-priori that the Nash equilibrium is stable [53],
then we can use the following policy iteration algorithm which converges
to the Nash solution., .

Step 1: Choose {v: € Fz 5 4=1,23.

Step 2: Obtain vz+1 by applying the algorithm of [39] to the following

optimization problem.

ket+1 k  k+l, kt+l kK k+l
fa'] 1 = (3 - .
Yy a k+Tin {Q(\)j,\)‘ )Cz + F‘(\)j,\)‘ )} N j,£ 1,2 ’ j#‘

T T T U o E D P RPN S “TL ST ST YU SR Sy
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k+1 k
Step 3: 1If Vg NV, then stop; otherwise set k-k+l and go back to Step 2.

We now consider the Stackelberg problem. By the very nature of
the problem we cannot have any algorithm based on policy iterations. So
any iterative algorithm has to iterate on either one or both dual
variables. Consider the following algorithm which involves iterating on

k k

k .k k k
both variables. For any (Cl,Cz) we find (vl,vz) and S‘(Cl,Cl) from

(5.10). If we can update (CT,C:) such that

lim [S

k .k k k
e l(cl’CZ) - .g.“(clncz)] =0 ’ IF].,Z;

then in the limit we obtain the Stackelberg solution by Theorem 5.2 and
Lemma 5.2. Due to the same reason as in the Nash case, we cannot use the
algorithm of [39] to update (Ct,cg) and guarantee convergence.

It is not poasible to develop an algorithm based on updating the
leader's dual variable alone. But consider the following algorithm which
involves iterating on the follower's dual variable.

Step 1: Choose Cg.
Step 2: Find

fk(vl) = arg min {Q<v1,v2>c§ + Fz(vl,vz)}.
vy €0

Step 3: Obtain vy by applying the algorithm of [39] to the following

optimization problem.

k
ol, = min {Q(vt,fk(vt))cg + Fl(vt,fk(vt))} .

k
vy GFI

V. SO S, S VU S SRS R i SIS SRR SV S, NS YR U

ack

Tyats

o Ada




k k k
Step 4: Find v, = £ (vl), and

k k k. k k k
h(cz) = Q(Vl’\)z)c2 + Fz(\)lx\’z)°

=k k
Step 5: Let h(Cz) = m:x hi(Cz)
k k

B(¢;) = min by (C) .

Update cg - c§+1 such that

k+1

h(C2

k+1 =k k

1f K(C?) - h(Cg) < §,where § is sufficiently small positive real
number, then stop, otherwise
let k =~ k + 1 and go back to step 2.
It is very difficult in general to update Cg in the desired way
via steps 2 and 3. Due

1
to this dependence,the algorithm of [39] cannot be used to update Cg and

because of the implicit dependence of h(C:) on vk

guarantee convergence. But if we do have convergence, then the limiting

solution is Stackelberg by construction.

5.5. Incentive Policies in Scackelﬁerg Problems

We shall now obtain stationary Stackelberg strategies when the
leader, in addition to knowing the current state of the process, also has
access to the follower's decision variables. Under such an information
pattern, the leader has a potential to force the follower to'cooperate in

achieving his global optimum. Due to the nature of the information pattern,
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although the leader declares his strategy first, he actually acts after the
follower has made his move at every stage of the game [48]. We shall
consider such Stackelberg problems with one leader and N-followers playing
Nash, and give an algorithm for computing affine incentive strategy for the
leader which helps him achieve his global optimum. Player-0 is assumed
to be the leader and players 1, 2,..,N are assumed to be the followers.

The following assumption is made to guarantee a solution to the
new Stackelberg problem.
Assumption RS:
i) Ul(i) is convex; 1=1,2,.,n; £=1,2,..,N
i1) For any C,, Hi(cl,uo(i), u (1), ..,u,(1))is strictly convex in u_(1)

and uz(i); i=1,2,..,n; £=1,2,..,N.

The leader's problem is solved in the following steps.

Step 1: Obtain the global optimum of J° by solving
voneuirxl \;12:}1 \;:g;"n Jo(vo,vl,.,vN) (5.12)

This can be done by applying the algorithm of [39,40]. Denote the minimizing

solution by

vy = [y (1,u,@),. .« u )] | £=0,1,. N,

Step 2: Choose the leader's strategy as

* ~ N ~
Vo =V, - 381 P, lv,v,] (5.13)
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Py = disg [Py}, Ppy.osPy] 5 47L,2,0,N.

* "
This strategy has the open-loop value Vo " Yo whenever the followers
* - A ~ a
are forced to play {v‘ =v, 4=1,2,.,N}. Since (vys Vys-svy) is the
desired open-loop solution for the leader, the P‘ are chosen such that the
* ~
followers' optimal reaction is {v‘ = v, £=1,2,.,N}.

* %
Step 3: Solve the linear equations for {(al’cz) ;  4=1,2,.,N}
* -~ - ~ * -~ ~ ~
Qzln = Q(Vos\lls- )VN)C‘ + F‘(Vos\)l:~a\\N) H [,-1,2,.,N .

Step 4: Obtain {Pl; 4=1,2,.,N} from the gradient equations of [50], which

in our case can be written as,
1cha @, @,..,u.d) = HE(Ch,u (1),u,(1),..,0,(
Pat T (154 Cprto @)y ety = Ty (50 ()0 (), yiy (1))
i=1,2,.,n; f=1,2,.,N.

* -
The leader declares to follower-4, Vo and {v,; j=1,.,N; j # 4}. Then,
follower-4 solves the optimization problem
L o= min {QQy,vpsey SRR RO 3 :
d‘ n Y Qn]:" Q(\’o’vl"’vj-l’vz"’ﬁ-l""‘N)C["Fz(vo’vl""Vj-l’\’z’\’j-l-l""\’N).}
)

and obtains his optiaml strategy v: = ) by applying the algorithm of
[39,40].
Notice that the Stackelberg solution of this section is

computationally easier to obtain than the Stackelberg solution of the

previous section.

..........
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5.6. Incentive Policies for Weakly-Coupled Markov Chains

Now we shall consider the incentive design problem in the
context of large Markov chains consisting of N weakly-coupled groups
of strongly-interacting states. Such models arise naturally in the modeling
of reservoir dynamics in hydro-scheduling problems [41,42] and queueing
network models of computer systems [46,47]. We shall assume that
transitions from each group are controlled by a single decision maker
having his own performance objective and the overall system is coordinated
by a leader whose objective is to optimize some global system performance.
The computational algorithm for obtaining the near-optimal policies will
be shown to exhibit multimodel features, i.e., each lower level decision
maker, in order to compute his near-optimal policy, need only know his
'local' dynamics and some ‘'aggregate’' of the rest of the system.
Weakly-coupled Markov chains are described by the generator matrix
A + €B [43,44], where A and B are both n-dimensional Markov generators

having the form

(5.14)

»1
=t
>
:J
-1
ceses B
]

o

2
L(Z:::> ANJ L N.a

with {Aj’ §=1,2,.,N} being nj-dimensional Markov generators.
Thus the Markov chain consists of N groups of strongly-interacting
states. The weak interactions between states in different groups are

modeled as multiples of a small positive scalar ¢.
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For the decision problem to be considered we have

:;: A = A j » B = j
B I DR I ) ek
& - J 12 N
. - vy = [uo(n1+. .+nj_1+1),...,uo(n1+. .+n.j)] 3oV, ™ [vovo..vol
S vi® g, 41y, 000 (b )] 3=1,2,.,N (5.15)
TR
F i where, as before, player 0 is the leader and players 1,2,.,N are the
b ':.
Ef‘ 7 followers playing Nash.
E The cost vectors of the decision makers are of the form
1 - —
[ £,(Lu, (1),u, (1) v, v
1
£,(ap,u) ()0 @)))
’ F‘(Vo’\)la-g\)N) ® | Seesssesssssssssccss = | Semmeesees
f"l(nl+1,u2 (u1+1) Uy (n1+1) ) .
[ ]
] F‘z(\’os V2)
f‘z(nl-l-n2 ,u.2 (n1+n2) T (nl«i-nz))
e e /ittty - s = s e e ' - -
: 1
,-. ] ]
' 1
ol [ ] '
U p——— - - e eccccanesne
2 f P (n-nN+].' sUy (n-nN+l) e (n-nN-i-l) )
[)
: ]
© ' 1..ﬁ&\)N )
< o’ VN
3 £,(m,uy(),u (0))
H
o 4=0,1,2,.,N, (5.16)
The following assumption is made about the process.
e T ST e L e e e e e X e "
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Assumption B:
*
1) For all {vlerz; 4=0,1,.,N} and 0 < ¢ < ¢ , the Markov process defined

by A + ¢B has a single ergodic class.
2) For each vOSFo and “jEIB’ the Markov process defined by Aj(vg,vj) has
a single ergodic class.

Assumption B2 implies that each Aj (vg, vj) has one zero eigenvalue.

The corresponding right eigenvector t, is the nj-dimensional column made

J

of ones. The left eigenvector v (vg,v

i 3 h|
stationary probabilities for the states in the j-th group when g=0.

) is the n,-dimensional row of

Let,
[ Oq ¥ 1 () )
t 2
2 v,(v ,v,)
T= ..' s V(\)os\’l,- ’VN) = 277 % O
l. .. N
O ™~ Q v (Vg )
L a u .

(5.17)

It has been shown in [44] that the n-dimensional probability

vector p of the Markov process can be approximated by,

p =TV + 0(e) (5.18)

where 7 is the N-dimensional probability vector of the aggregate Markov

process with generator VBT describing the transitions between different

groups.

— e @l o . el Tl h LTl e ala e e Tl L s ala el e et tat s e e e

PR s | ale s .

imaaeat

Lelete o

OO & DS ¥ ™

B [ SRR TN |

3 By ~y Ty TR

PR
12 — s



&
l-a

LIS

."'
A

(SN
Kf-
S T
S Y
i SN

T

95
Let m(v,e) and -1;(\)) be the unique solutions of

m(v,e) [A(W) + eBM] =0 ;5 wlv,e)l =1, (5.19)
m(v) V()BT = 0 ; Tl =1, (5.20)

where v = (v >vyseavy) -
Then we have,
(v, ) = m(v) V(v) + 0(e) . (5.21)

For any given policy vé€I', the average cost per stage can

be approximated as,

Jl(\he) = ﬂ’(\),E) F‘(\’)
= 1(v) V(v) F,(v) + 0(c)
= Tfl(v) +0(e) ; 4=0,1,2,.,N. (5.22)

:f‘(v) is the average cost per stage asséciated with the aggregate chain

and
T =T F ) 5 40,1,2,.,N. (5.23)

where FL(\)) = V(v)F‘(v) is the N~-dimensional instantaneous cost vector

assoclated with the aggregate chain.

...................................




™ 96

i We shall now obtain near-optimal policies based on the aggregate —

costs 3 1,(\’)' In terms of the aggregate dual variables c P we can write

aly = V(W) BT C, + F,(v) d

;,@ = sj(v) H Eje ]RN ’ £4=0,1,2,.,N . (5.24) ‘

\ Alternatively,

TZ;Z | ;31“ = V(v) [B(v)'l‘?!‘ + Fz(v)]

::f = V(v) 8‘(\)) 3 4=0,1,2,,N; (5.25)
where
- - - .

e gzl(\)oy\)l) Bl(vo’ VI)TC‘ + Ftl(vo’vl)

a5 2 - 2 = 2
':':'. 8‘(\)) = 8‘2 (\)09\)2) Bz (Vo’ \,Z)Tc‘ + Fzz (\’o’ Vz) . (5026)
{

N
Y T Y Y 7 )
LT YT Y I Y

pua -

8 o (Vi o) BN( 19, TC; + F (W) | :

o Therefore, in component form (5.25) becomes

. 2 " VOB By 5 IRL2,L8 5 am0,L2N L (5.2D)

j o

: Each component in (5.27) can be interpreted as average cost per stage

associated with the n j -dimensional local chains with generators

wk 2l

b
Aj (Vo’Vj) .

R

L)
™
~’s

v
0
1 %

L0 A
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(. » Hence, we can write

v 2l =A.3,v0C,, +8,.0,v) 3 §=1,2,.,8  ; £=0,1,2,.,N ;
i oty 3 \)o,\)j 45 glaj VO’\’j H J=l45., 3 2dse,y 040N 5
b

[ . (5.28)
S where C£j€ ]an are the dual variables associated with the local chains.
B Based on the hierarchical structure given by (5.24)-(5.28)

\ - of the aggregate costs, we now formulate an algorithm to solve the

;5 1; leader's problem.

Step 1: Obtain the global optimum of 30(\)) by the following iterative

4
g ¥

scheme.
." s i) Choose El;
‘. - ii) Solve
N 1 = 303K 4 oF -
L n hoj(co)lnj jminj min [Aj(vo,vj)coj+ goj(\’o’“i)li 3=1,2,.,N ,
o Vo€lg vjél"j

using the algorithm of [39,40]

= =k -k

i - i1i) Find b (C)) = max b, (C))

= L j

< =k =k

SR l‘o (Co) min hoj (Co)

Sl N, . j
L. 4

- - - =k -k =k

2 If ho (Co) -_ho(Co) ~ 0, then stop; otherwise update Co by the algorithm of
X ) [39]; set k-k+l and return to (ii). Denote the optimal solution by
G -[:..: \)z ; Fo’l’z’a,N-

I
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Step 2: Solve the linear equations

PRANE V(G)B(;)TEI’ +F, ()

- - “z ~ Al ~ . _
lenz AL(VO,\JL)sz + 8‘£(V°’V‘) ’ z‘l’ZS'IN‘

Step 3: Choose the leader's strategy as

~'z - Az _ _ ~ . -
\’o \)o P‘z[\)z \)'z] " Pz dia’g [P‘z].’ Pzz"‘)szl
and solve for PZ from the gradient equations

5 o Hc ALy e Hac b2

[“ PLVV‘H-‘(CI‘L’\)O’\JJ) V\)'GH‘(sz’VO’\)z)

o

;.'A‘; —_ ;\z ~ - nz ~ A‘z -

b Hz(c‘zz3\)°sv£) Az(vo:\)z)cz‘z + Szz(vo,\)z)

L.‘

g 4=1,2,.,N .

5

The leader declares to follower-4, v, and {;j; j=1,.,N3 j#4}.

L 2

o
A BN
2 PR

Follower-4 then solves his optimization problem by the following iterative

= scheme.
— Step 1: Choose Ei

Step 2: Compute

e—

i‘i Aj(cl) j(vj,v ) [B (vg,;j)TC + F j(Vj’; )]

=V (V :\)j) 8.@_‘](\) »Vs) H j=1’2:-;N; j#z'

.-

i 4
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Step 3: Solve the local optimization problem

- ~4
h (C‘)l min [Az(vo,v )C jg(“o ,vz)]

s vlefz

applying the algorithm of [39].

Step 4: Find

B,Cp = e hyy €
-k
2yCP = mn Ry @

1f F‘(Ei) Q(C ) ~ 0 then stop; otherwise update Eﬁ by the algorithm of
[39]; set k~k+l and return to step 2.

When the algorithm converges, the leader's declared strategy
ensures that the followers' optimal reaction based on the aggregate costs

“~

would be {:‘ = v, i £=1,2,.,N}.

Let us now examine the saliant features of the algorithm
presented above. Specifically, we would like to see what each decisinn
maker has to know about the system model and the costs in order to compute
his strategies. The leader, being the overall coordinator has to know the
full A and B matrices and the cost vectors of all the decision makers,
Each follower on the other hand, need only know his own local generator
matrix Al’ the interconnection matrix B and the steady state distribution
of the other local Markov chains along the optimal solution. He need not

know the detailed dynamics of the other local Markov chains. This

multimodel situation accounts for many practical problems where the 'local'

AP WP NPT WA ST YT SPAP RPURr P TPy NEU U D IR T WhT W PP VPP Wy




decision makers do not have an exact knowledge of the 'global' model.
Note that none of the decision makers need to know the value of the
perturbation parameter €.

In the Qequel we shall give a series of propositions which
establish the asymptotic properties of the multimodel solution given
above.

Let us denote the optimal Stackelberg solution for the full

problem as

* * *

Vo(c)’ Vl(e)a LI Y VN(E)
The following proposition establishes the 'closeness' of the multimodel
solution to the optimal solution.

Proposition 5.1:

1f the multimodel solution {vo, Vs - \N} is unique,then

i) Jo(vo, Vis ¢ ‘N) - Jo(v:, VI’ - v;) = 0(62)

* ~
i) 7} = vl + 0(e) ; 4=0,1,2, . , N .

~ ~

” * * %*
iii) Jz(vo, Vis e M) - J£(v°, Vis o+ s Yy = 0C) 5 £=1,2, . , N.

Proof: (i) and (ii) follow directly from [44] because the leader's
problem is a global minimization problem.
To prove (iii) we let

P % " - ~ -— - -~ —
3 = 3,00 = 3,00 T, 0 - 5,00 + Jz(v*) +3,00 - 7,05

£ 13,00 - 3,0 + 13,65 - T,65] + 7,0 - 7,00

LT L L A N T S S T, Ve T e U e s O o T S T S T S e T NP P T

laatals | htaR

sia’la’s
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Due to (5.22) we have

19, = T, = 0ce)

3,600 = T,00] = 0 '
. | z(\: PSS (e .
i :':‘;
i - Due to (ii) and the continuity of the aggregate costs in the
i - - - *
SR controls we have |J£(v) - Jl(v Y| = 0¢e).
S
P Hence, (iii) follows.

The following two propositions establish the robustness properties

- of the multimodel solution.

Proposition 5.2:

~ ~

Let;£=ar8ﬁit;_' T (s Vs« o 3 -,vN) 3 #=1,2, . , N ;
4 y

! then ,
i) J‘(\)o’ Vi ¢ 9 VN) - J!'(\)o: Vis 9 \)"s . 9 \JN) = 0(52) 3 L4=L,2, . ,N

i.e.; no follower can benefit significantly by deviating

- unilaterally from the multimodel solution.

L

~ L

i.i) Jk(\)o) \)1) * )y \N) - Jk(\)o’\’li ’)-\.;‘) LI’} \)N) = O(E) H k=0’1")N; k*‘

G

i
5

” i.e.; by deviating unilaterally from the multimodel solution, no

E_i follower can hurt the other decision makers significantly.

; Proof:

X i) Since ;‘ = arg lzin J‘(v » \;1, Sy Vg e s \;N), it follows directly
M) 2

from [44] that

vy v_‘v‘_v.‘v__] 3‘, "
T [0 XIS
!

~

Jz(\’o’ IR \:N) J (v s \’1’ .y v‘, N \JN) = 0(e2)

~

G
o
K

Furthermore,

. LTV OO 5 aeL2, N

L it e a4
v

c..
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Jk(\)o,\)lﬁ LY \)N) - Jk(\)os Vlr LY \)za . 9 VN) H k *‘
-.-J-k(\)o,'\)lx LY \JN) - Ek(\)o’ \)1, « 9 -\:z, LY \h) + O(C)

= 0(e) , due to (1) and the continuity of the aggregate costs in

the controls.

Proposition 5.3:

Let (;1,:&, .y :ﬁ) be the optimal Nash reaction of the followers

to the declared strategy :o of the leader; then

i)

ii)

Proof:

1)

Jo(\)o,\)ls . VN) - JO(VO:VI’V y o 3 VN) = 0(e)
i.e.; the leader does not lose significantly if the followers,

instead of playing their multimodel strategies, respond optimally.

T = - -— * * * =0
JO(\)O,V].’VZ’ « 9 VN) - JO(\’O’\)I’ Y \JN) (G)

i.e.; the leader does not lose significantly by declaring his

multimodel strategy v, instead of his optimal strategy v:.

Define

J;"Jz(vo, s« v ) 3 4=0,1,2, . , N.

By observing that f;‘ ; 4=1,2, .,N} is the optimal Nash solution
for the followers with respect to the costs [J; ; 4=1,2, . , N};
and {v‘ H 3-1,2, . 3 N} is the optimal Nash solution for the
followers with respect to the aggregate costs {3; 3 4=1,2, . , N};

we can show by constructing matched asymptotic expansions as in t44]
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that
o ~ -~ - (o} - R ‘-1 2 N
J‘(Vlg LY \)N) J‘(\)l’ - 9 VN) ’ 253 » ;

~

furthermore, ;2 =y <+ 0(e) H 4=1,2, . , N.

£

Hence, (i) follows because of continuity of costs.

ii) follows from (i) above and (i) of Proposition 5.1.

5.7. An Example

We shall now consider a numerical example of a weakly-coupled
Markov chain and obtain the near-optimal incentive policies. The example
is motivated by the following hydro-scheduling problem for electric
power generation.

Consider a hydro-power system consisting of a central reservoir
which feeds into three local reservoirs. For simplicity assume that the
central reservoir feeds into the local reservoirs one at a time, and
switches between reservoirs in a random fashion.

When the central reservoir is feeding into one of the local
reservoirs, the other two reservoirs are assumed to be in some 'idle'
state, Each local reservoir is assumed to be under the authority of a
separate decision maker who controls the rate of water release u, for
electric power generation. The 'state' of each local reservoir is
characterized by its water level, assumed to be 1,2,3, when it is active,
and 'idle' when it is inactive. The central reservoir is assumed to have
an infinite capacity. The local level changes are agssumed to be of high

probability compared to the switching of the central reservoir between the

el
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different local reservoirs. There is an overall coordinator or leader -

in.

who controls the rate of switching and the inflows into the local
reservoirs. His decision variable is assumed to be u,. The objective

of each local decision maker is to minimize his own local average

PURTE

production cost per unit time, whereas the objective of the leader is

to minimize the global average production cost per unit time.

The above system can be modeled by a nine state Markov chain
consisting of 3 weakly-coupled groups of strongly-interacting states. ;
The states are as follows:
1 = (inflow into reservoir 1, level 1, reservoirs 2,3 idle) %
2 = (inflow into reservoir 1, level 2, reservoirs 2,3 idle)
3 = (inflow into reservoir 1, level 3, reservoirs 2,3 idle)
4 = (inflow into reservoir 2, level 1, reservoirs 1,3 idle) %
5 = (inflow into reservoir 2, level 2, reservoirs 1,3 idle)
6 = (inflow into reservoir 2, level 3, reservoirs 1,3 idle) ?
7 = (inflow into reservoir 3, level 1, reservoirs 1,2 idle) e

8 = (inflow into reservoir 3, level 2, reservoirs 1,2 idle)

9 = (inflow into reservoir 3, level 3, reservoirs 1,2 idle). s

IS S




.............

ot
o 105
M T The system matrices are assumed to be the following:
‘\.I ‘.‘
e B -
SO . -0-08-0-1ui+0'1u 0-08+0-1u,-0-1u 0
R ° i o
<. "” = - ) . o) e} w()e . . =i
a Ai(uo,ui) 0-05-0 06“1+0 065uo 0-1-0 Olui 0 OOSu° 0.05+0 07u1 0 06uo

0 0-09+0-1u =0-02u =0:09~0+1u +0°02u
o i o i

i=1,2,3

0 0 0-2u
o

Bij(uo) = 0 0 0-lu » 1,3=1,2,3 H i#j

F -

-0'4uo 0 0

Bii(uo) = 0 -O-Zuo 0 , 1=1,2,3 .
0 0 -O'3uO-J

The control sets are

U, = {u, : 001 ¢ u < 0.1}

R A A
R /O PN

U‘ = {u" : 0:05 < u, < 0-2} ; £=1,2,3.

v ey (ras 0
AR TSN N gy
N [PUR R
FLE ’ N .

........ . RN ~ .
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The instantaneous costs are,

v T T 4
' e T e e

' et
« 0% e

£,(m,0, @),u () = @ + 25, )% + 10w @)7  ; n=1,2,3

£y (a,u_(1),u, (@) = (5-m)° + 30w, @)% + 10 (@)? ; 04,5,6

£, (@),uy(0)) = (8-m)” + 20uy (@))% + 15w )2 n=7,8,9

w

£,@,u_(8),u;(1),u, (1),u,(®)) = 3 Z £, (,u (@) u @) .

Using the algorithm of the previous section, the near-optimal affine

incentive policy for the leader is obtained as

- . r .
50(1) 0-067 - 0-5833(u (1) - 0-146)
60(2) 0-052 - 0-4762(u(2) - 0°098)
60(3) 0-046 - 0-6334(u,(3) - 0-051)
60(4) 0071 - 0-5721(u, (4) - 0-131)

Vo = | 9,(5) = | 0-066 - 0-4654(u,(5) - 0-081)
Go(e) 0-056 - 0-6142(u,(6) - 0+051)
60(7) 0-055 - 0-6518(uy(7) - 0°164)
60(8) 0-048 - 0°5532(u,(8) - 0-112)
30(9) 0-044 - 0:7156(u4(9) - 0-06)
L .J - .

PRy

)
!
{
)

|

1]
s
¥

I

]
|
I
3
»
L
3
b
f
I
r
4
)
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The optimal strategies for the followers' are given by,

7 r 7 s
u (1) 0-146 62(4) 0-131
vy u, (2) 0-098 vy u, (5) 0-081
u, (3) 0-051 u, (6) 0°051
. ] B -
uy(7) 0-164
vy = | <38 | = [0-112
63(9) 0-06
o - N -

The resulting costs (for ¢ = 0-1) are given by

0-76541

>
.—l
]

0-75332

(SR}
]

0°75884

[T
W
[

0-75917

(2P
[}

.............................
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!I We now compare the near-optimal solution ;o to the optimal solution

i for ¢ = 0.5, 0.1, 0.0L.

e = 0.5 : e = 0.1

0.052 0.14)

0.5133(u1(1) - 0.132) 0.061 0.5622(u1(1)

2

0.4521(u1(2) - 0.09) 0.048 - 0.4702(u1(2) - 0.102)

.041 = 0.5964(u,(3) = 0.053) 0.045 - 0.6208(u, (3) - 0.051)

0.075

0.5548(u2(4) - 0.12) 0.072 - 0.5637(u2(4) - 0.124)

0.068

0.4131(u2(5) - 0.062) 0.066 - 0.4543(u2(5) - 0.08)

Ty " POy —————
. P v . Y AN
. P LA '...‘.:, FEAPES AR R
P N L L DRI S B o A

0.052

0.5861(u, (6) - 0.05) 0.055 - 0.6004(u, (6) - 0.051)

0.066

0.6142(u3(7) - 0.161) 0.058 - 0.6427(u3(7) - 0.164)

0.051 0.5091(u3(8) - 0.092) 0.048 - 0.5324(u3(8) - 0.1)

0.048

0.6634(u,(9) - 0.053) 0.045 = 0.6988(u,(9) - 0.055)

3 - .
SR AL FMATRERAERRRY
Vit et e B
LI . LRI

%* *

0.73718 J = 0.75012
0 0

J

3 (V) = 0.78213 J (%) = 0.75917
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¢ = 0.01

0.066 - 0.5848(u1(1) - 0.144)

0.052 - 0.4814(u;(2) - 0.1)
NI 0.045 - 0.6444(u,(3) - 0.051)
E = 0.07 - 0.5688(u,(4) = 0.13)

e . 0.068 - 0.4711(u,(5) - 0.082)
0.056
n r 0.057
- 0.048

0.6155(u2(6) - 0.051)

0.6622(u3(7) ~ 0.165)

0.5601(u3(8) - 0.11)

0.044

0.711(u3(9) - 0.036)

I = 0.74186
"= 0.741

I (%) = 0.74212

The above numerical computations clearly illustrate the convergence

% ~
of Jo to Jo(v) as ¢ -0.

5.8. Conclusions

In this chapter we have considered the average-cost-per-stage
problem for finite-state Markov chains controlled by multiple decision
makers., After formulating the general decision problem and obtaining
certain fundamental existence results, we focused our attention on the
multimodeling problem for a class of Markov models consisting of N weakly-

coupled groups of strongly-interacting states, We have outlined a

— A A A e s N
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procedure for obtaining near-optimal incentive policies, which allows the
'local' decision makers to use different simplified models of the system.
Specifically, we have shown that each 'local' decision maker need only

know the generator matrix of his own local Markov chain, the generator

matrix describing the intergroup transitions, and the invariant measure of
the other local chains along the optimal solution. Only the coordinator
!l needs an exact knowledge of the 'global' model. The well-posedness of the

. procedure has been illustrated by a numerical example.
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CHAPTER 6

INFORMATION INDUCED MULTIMODEL SOLUTIONS

6.1. Introduction

In the previous chapters we adopted a perturbational approach to
the multimodeling problem. The crucial issue was one of well-posedness of
the multimodel design. We had to establish the convergence of the optimal
solution to the multimodel solution in the limit as the perturbational
parameters go to zero.

In this chapter we attempt to induce a decomposition of the
problem based on input-output considerations, such that the optimal
solution within a class of admissible strategies, can be obtained from
multiple reduced-order models with partial noninteraction among the
decision makers.

In large scale systems, the DM's observe, in general, different
variables through their individual objective functionals. These observed
variables play a crucial role in the solution of the problem. Here we
focus on tpe role of the observed variables in multimodel strategy design.
We attempt to identify the core by examining the input structure and the
observability structure induced by the observation sets of the DM's.

In Section 6.2 we formulate the problem, and discuss the
structural decomposition and the class of admissible strategies referred
to as Structure<Preserving strategies. In Section 6.3 we obtain multimodel
solutions under FPS and FIS information patterns. In Section 6.4 we discuss

decoupling of completely observable systems. In Section 6.5, we discuss
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briefly extensions to many decision maker problems and Pareto games. In
Section 6.6, we study applications of the concepts to control of large
scale interconnected subsystems and multiarea power systems. Section 6.7

concludes the chapter.

6.2. Problem Formulation

6.2.1. The problem

Consider a linear system controlled by two DMs,

x = Ax + B.u, +B.u, ; x(0) =x

Y1 7 P22 o (6.1a)

yg = Cyxs 1=1,2 (6.1b)

dim x = n, dim ui = m dim yi = pi

The variables ¥i will be referred to as the 'observation set' of each DM.
These are in fact the controlled variables as seen through the performance
index of each DM, and may or may not correspond to the actual system outputs
available to each DM.

The performance index of each DM is given by
) P '
]
I (vpv) = (35 J;Wiyi +wRu)de [u (0) = vy ()} L= 1,2 (6.2)

where Yi(') is the admissible strategy of DMi, measurable with respect to the

sigma-algebra generated by his information set (to be specified later).

{

S

L Jed i

L

ot i
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The DMs are to select optimal strategies {Y;IYI €r;; i = 1,2} such

that

Ji(YI-Y;) < Ji(Yi,v;); Yy, €T 1,9=1,2; 147 (6.3)

where [Fi; i = 1,2} are some admissible strategy sets for the DMs to be spec-
ified later. The pair of inequalities in (6.3) define the Nash equilibrium

point.

D - LB ASMSASarirMty - CEARRRAMN
. ST R .
. . s 4 . @, .

In large scale game problems, the ‘curse of dimensionality' may ren-

I

der any direct approach to the optimal solution computationally intractable.
. Hence there is a strong motivation for the DMs to look for alternative ap-
? proaches to the problem which ease the computational difficulties. The ap-

- ;f proach formulated in the sequel has the desirable feature that it induces a

partial noninteraction among the DMs leading to a lower order gam: . This &z
done by choosing appropriate admissible strategy sets Fi based 4= a partic-

ular structural decomposition of the system.

6.2.2. Structural decomposition

The observation sets of the DMs given by (6.lb) induce a certain ob-

servability decomposition on the state space. We propose to exploit this

decomposition to obtain multimodel strategies. To do this, we start by ex-

PR SR ALEE E3A i

hibiting this observability decomposition explicitly by transforming the
state space. This may be done either by performing chained aggregation se-

oy quentially with respect to each DM's observation set [8,54,55]; or, equiva-

Lot g am aa 4 ae . O
oy
]

lently by making a similarity transformation directly,following a procedure

dual to the one in [56,61] where a controllability decomposition was achieved.
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]
The transformed system is represented as, 1
i =AE+ 3 Bu.: %(0) = x 6.4a
X = AX + Bju; + Byu,; x(0) = x4 ( )
yi = Cix ; 1=1,2 (6.4b) ]
where — 8
- - =
Ap 0 43 O {
_ .o ry A 0 ’
e 22 23 :
0 0 A33 0
b Bar Baz o A i
—-— - - A
= [ey 0 6y 0] ‘
C,= [ O C,, Cpy 0] $
- — 1
Bil 2y
3 :
= i
B, = | _ 21, 1a=1,2 ; -
Bi3 -3
B
and d
%
-]
-
. L Ats Aqs _ 3
- [ Aii’ Cii] s - s [ Cii Ci3] s L =1,2 =
0 A
- 33 1
[~ are observable pairs, B
1e
% .

N ¥

e el

LB P
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Tﬁe eigeanvalues of {Zii; i = 1,2} represent the modes which are ob-
servable only to DML but not to DMj (L # j); the eigenvalues of 233 represent
the modes which are observable to both the DMs; and ﬁpe eigenvalues of Kz4
represent the modes which are unobservable to both the DMs.

For simplicity we shall neglect the jointly unobservable modes. In
a well formulated problem these modes are stable and do not contribute any-
thing to the cost. Hence, from now onwards we shall assume the system ma-

trices to have the following form:

r“

A 0 Ap
A A A 6.
A= 0 Ay, Ay, (6.5a)
0 0 A
| _ 33
- = . ¢z =
b o ¢p= [¢; 0 ¢nl
S (6.5b)
M . Cp= [0 Gy Gyl
:f: -
S B
Fn‘."-. | E - i . i =1]1,2 (6-53)
St i 2| ° :
.:_j.’ ‘i‘
- i3
a S
Eﬁ v The input structure specified by the matrices Ei, Eé are not in a
E'.'".‘
PO form suitable for our analysis. We need to make input space transformations
ri
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in order to appropriately overlap the input structure with the observability T

decomposition. Assuming that the pairs_{(K;Ei), diii’iii); i=1,2} are

controllable, there exist matrices Gl’ G2 such that the input space transfor- +

mation {ui = Giﬁi; i = 1,2} gives the new input matrices the following form

[57] . ™~ s —1 [ -~ -1
Bix Bu4 0 By
B, = B,G, 12 R B, = B,G, 22 24 (6.6)
o B 0 B ]
) B 13 A | 23_ J
where the pairs {d{ii’ﬁii); i = 1,2} are controllable. ?

Remarks: Before performing the input space transformation, we might need to

do another state space transformation; but this can be done without destroy-

ing the observability decomposition. This is to put the system in an appro- :
priate basis such that X = Rlea2e¢ where Z is the state space and Ri is a
controllability subspace of DMi. The input space transformations Gi identify }
explicitly the control channels through which the individually observable b |
modes are completely controllable [57].
R
d

6.2.3. Structure=-Preserving strategies

The system and the performance indices, after the observability de-

composition and the input space transformation, take the following form:

% + 838 +B,a, ; %(0) = & 6.7a
X + Blul + 32u2 ; X(0) = X4 ( )

k|

X =

y, =C%; 1=1,2 (6.7b)
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': lwl -l -
- Ji 7 o(yiyi + uiRiui)dt 3 1=1,2 ; (6.8)
:i where ﬁi - G;Rici. We shall assume that
| X Ry O
g R, = >0 t,y=1,2;58 97 .
4] Rij

The nature of the results obtained here hold for arbitrary positive

definite R ; but assuming a block-diagonal form results in simpler derivations.

AJ " g
. RAFC N AL
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= Before we obtain the Nash solution, we need to define the set of

;[f ;: admissible strategies for each DM. The admissible strategy sets that we are

t particularly interested in here will be referred to as 'Structure-Preserving'
strategies and are defined below.

- Definition: A Structure-Preserving strategy set is the set of all linear feed-
back strategies which preserve the observability decomposition (6.5) of the
closed=loop system.

o In the single DM case, the three-component-control of [55,62] is a

Structure-Preserving control. After the first component achieves decoupling,

the second and third components which control the aggregate and the residual,

respectively, are Structure-Preserving. The design in [55] was purely from a

: pole-placement point of view without any optimality considerations. Here we
shall show that in the multiple DM case, the design of Structure-Preserving

Nash strategies leads to multimodel solutions.

Rl
F14
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6.3 Multimodel Solutions

.
—ra s

> We shall consider two types of information patterns for the DMs:

i; the Feedback Perfect State (FPS) and the Feedback Imperfect State (FIS).
Under the FPS information pattern, each DM knows, at time t, the current
state of the system, x(t); and under the FIS information pattern, each DM

knows, at time t, only the current value of his observation, y(t).

o 6.3.1. FPS information pattern

Under the FPS information pattern, the admissible strategy set Fi

of DMi is the set of linear state feedback strategies which are Structure-

Preserving. Specifically,

o
—talll

FigSi1 Fi3840 Ty

['1 - { Y;LIY;L(;‘) - -Fii - e 1.( }; i1 = 1,23 (6-9)
0 0 F31

Atar.l » AD

where aij is the Kronecher delta.
Now, to find the Nash solution, we need to find a pair {yI €T, ;
1 = 1,2} such that the pair of inequalities (6.3) are satisfied. Sub-

stituting u, = yi(;) from (6.9) in (6.7) and (6.8) we get

k=AK; X(0) =%, ‘ (6.10a)

(6.10b)

Aad . FOP— | NNy alaodh

(6.11)

(6.12)

atala .. T
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and the closed-loop system matrix is
E -
| 1= BF1p) 0 (A137B11F 137 BaF3178p1F 3)
N - a N 0 K - ~ F - - "~ - L) -a
_ K=a-BF -BF, = W27 BpaF22)  A2378,,F237 By, F 3B 10F )
C
. 0 A . -B -B
g 0 (B33~ B13F13 7 By3F3))
- - _
Ay 0 A
[ . . :
e 0 A22 23 . (6.13)
0 o A
- 3
! * * * . 4om -
The optimal solution {Fii’ Fiqr Fgq 5 1 1,2} will depend in gen
eral on the initial conditions X, [58]. To remove this dependence, we fol-
low [58] and assume that the initial conditions are random with
e -
- E[R )] = N > 0 , (6.14)
o and modify the cost functionals to be
Iy % f(x Q®de }; 1=1,2 . (6.15)
= Introduce Ml, Mz, L € R™ defined by
g
Lss, = L (@'qmde; 1 (6.16)
i Oui o " 2 o(x Qi )dt, 1=1,2 ) *
. @
1 L= £E[i(t)i'(c)]dt . (6.17)

- . . . . - PR e R BRI - .
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For any given pair (Fl’FZ) such that Rex(ﬁ) <0, M, 2 0 and L > 0 satisfy .
Sii the matrix Lyapunov equations
_ uA +A"M +Q = 0; 1=1,2 (6.18)
B AL+ 1A' +N = 0. (6.19) é
;i; Partition M , L, N appropriately '
L—'- [ a— ,-
(1) (1) (1) 4
o | My Mg M3
- (i)' (1) @ | . -
% M, My, ; M5 ;. i=1,2 (6.20a)
¥ LD W (W)
- m¢ M K
| " Y3 33| .
q
1 K ] ® -] 4
; S PR M1 M2 Fis X
.
5
- ! = ! 1
h L Lip Ly Iy i N No ¥ Ny (6.205) 7
' L. L N, N! N
1 113 23 33 13 23 33 ]
L - L — S
: Applying the Matrix Minimum Principle [59], the optimal FIi’ FIs, F;i for the K
;E Feedback Nash solution*' can be shown to satisfy (for i,j = 1,2; i # j)
5 j
... -~ e ~ % 1 - ~y (i) - ~y (1) ' -
— RygFTaleg + RyqFialys = BygMy;'Lyg = BygMya'lyy = 0 (6.21a) w
o P s ok _a () A '
3 RysFiales * RyqFialas = ByyMis'Lyg = ByMyylyy = 0 (6.21b)
ET' ~y (i)' ~ ) - (i) ~y (1) '"]
B, .M B .ML.. - B ML B! M\Z/L.. =0 (6.2lc) ~

- ¥
RygFaalas = ByaMya'hys = ByaMyatlay = BygMyi ey T BeaMistas

*
By an abuse of terminology, we shall refer to the solution as
Feedback Nash. It 1s not Feedback Nash in the sense defined in [9] because

it does not satisfy the Principle of Optimality. It is Nash in feedback
information pattern.

1.7
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1 { 1

uij) u;j) - uj(3) - 0 (6.22a)
Wpe o (L)  ar 3 R

“11 A11 + Aii“ii + cncii + riiniirii 0 (6.22b)
(L)% (1)} % Sxt (L) | =t = i

Myg Ay + Myg'hgy + A M3" +C Crq +F R Fig= O (6.22¢)
(1) 2% ~yer (1) (LY ~% Aget - -

My3'h3y + Aggiyy” + Myg'Aj + A/ M, +CioCo,

*! o % *' o * .
+ PRy Fiy + PR Py = 0 (6.22d)

A* L .. +A* L. +L, A% +N,. = 0 6.23
1li3 + Ayqlyy + LigAq + N 4 (6.23a)

A* L., + LAY +N.. = 0 (6.23b)
33l33 + Lajhs; + Ny, .

- ~ - Je %* ap® .
Ii’ AI3, A;B ; 1 = 1,2}areas in (6.13) with {Fii - Fii’ Fi3 - F13’ F31 F31’
1 = 1,2}. Solving (6.21) we obtain,
* s=lar (1)
Fi1 11914M11 (6.24a)
* o Rk a® 6.24b
Fiy = Bpby s (6.24b)
Je i B3 (1) ) -1 L K ¢! (i) -1 6.24
Fay = RyyByslMyy” + Myg'Lyqlyql + 31}514["132"“11 Lijlag]l  (6.24¢)
Notice that even though equations (6.21a) and (6.21b) are coupled in F* and

%*
F13, we are able

ii
to solve for them explicitly as in (6.24a) and (6.24b).

This fact plays a crucial role in showing that the Nash solution admits a

partial noninteraction.

Substituting (6.24a) in (6.22b) we obtain,
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o)

(i)—- — (i) =y - (i)h A-lhl M(i) = 0 : { = l. 2 (6.25)
Mo TAgy +AMITTH CiaCay My By Bt ; g )
, ;
It can be readily seen from (6.24a) and (6.25) that Fii is the solution of B
an optimal state regulator problem with parameters (xii’ B,s» Eﬁ_, Rii)' '

The following proposition highlights the multimodel nature of the Nash

-
solution. t
Proposition 6.1: J
Given the linear system (6.7) controlled by two DMs, and their
A
performance indices (6.8), the design of Structure-Preserving Feedback j‘
Nash strategies under the FPS information pattern, leads to two low-order i
::j
coupled optimization problems defined by
1 ' =lA o -
min J, E { 3 J‘;(yiyi + uiRiui)dt }
ui zio .
subject to
Fir  Fi3
AT e |
- 31 »
where — - - — - . = ;-
Ay Ag3=ByyFay Byi  Byy
e I L B CERXCEDV
0 A33-Bj3F3j 0 313 >
. — e - :

o . - . . LT, .. - -
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' Nig N3

Elzgo 25! = |
Nyg N3,

1,3=1,2; 143 -

The solution to this pair of coupled optimization problems admits partial non-

interaction among the DMs, and is given by the set of equations(6.22)(6.25).
At this point we would like to remark that the controllability-obser-

vability of the triple {(Xii’ ﬁii’ Eii); i = 1,2} guarantees
Re x(&‘;i) < 0;1i=1,2 (6.26)

For the solution to be well-defined we need only to verify that Re 1(&33)'< 0.
The coupling between the optimization problems of the two DMs is due
to the presence of the control gain F3j of DMj in DMi's low-order model. Par-
tial noninteraction is achieved because each DM can evaluate his control gain
FIi independently in a decentralized manner by solving equations (6.24a) and

(6.25). The control gains {FI3, F;i; 1 = 1,2} are then obtained by solving the

coupled set of equations (6.22c-d), (6.23), (6.24).

Hence, we have succeeded in identifying the ‘'core' of a high - order
game problem where the DMs actually interact, and a pair of low-order control

problems, one for each DM. This has been achieved by restricting the admis-
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sible strategy sets of the DMs to Structure-Preserving strategies under the
FPS information pattern; and transforming the state space and input space ap-
propriately.

*
Notice that Fii is independent of the statistics of the initial

* .
3i’
i = 1,2} do depend, in general, on the statistics of the initial conditions,

*
conditions since it is obtained from (6.24a) and (6.25). But {Fi3’ F

as they are obtained from the coupled set of equations (6.22c-d), (6.23),

(6.24), which may be difficult to solve in practice. The gain matrices
* *

{FiB’ Fy;3 1 = 1,2} vhich result in {Li3 = 0; i = 1,2} are of particular

interest, as they are computationally simpler to obtain. Such a set is

given by

* L Rt o
Fia = RygByMyy” 5 1=1,2 (6.27a)
A-l ~ i ~ i
e = Ry (B M2+ B D] 5 1,0 =125 143 ¢6.27b)
Here M(i) w(i) £
13 » M33" satisfy the coupled set of equations (for i,j = 1,2; i # j),

(L)< (L)~ RIS LT ¢ 9 (1)
Myg'Agg ¥ Myg'hqgq + A M7+ € 0Cog = Myy7S, M5

_wD)a () (D) 1) D3z U)W D)
Mg SiMas My "SyaMat s My SyyMass My S M

I EY) (L) (D (L) _ (D) 3. Mg Q) o
My3'SyqMag’s Myq7S;My5%~ Myq S13’43j3 My3'SM5 0 (6.28a)
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(1)= - (1), ()= =t (W), 5 _uD (CORVICIF- LN EY)
M3g'Agq + Agq Mag'+ MioA, 5 + Ay M 07+ CpqCyq = Mga™S, My ™= Myy"S M5

JRNCS PR C SRR WRNTC D SR G D YRR ¢ S M ¢ S E-UN 6 DI 6 ) P €3
Myy SyM33 = M3q'SygMag’= Mgy’ qMaq"= Mgy, My3"- Mi37S Mq5

i)' (1) L) (1) W'z LD
- My3" SygMi3" - MygTSyMyst - Myg" S,yMa3

L DE ) W ) (D5 D) L
M3 SygMyy - Myy Sy M7 - MaT S M0 =0 (6.28b)

where,

=B, RI1B! ; S, =B ,RiBl,; §,. =B, RB,

Sg1 ™ BysRyyBrgd Sz " Bys®ysBias Sy " Bi5RejBis

s,, =B, 818 ,; 5, =B,R B ; §, =38 R 5.
14 © P16°13°16° P13 T Pi3iitis’t i 14713743

%*

Furthermore (FIB, Fy5 L= 1,2} are such that

~

%* - . - 6.
A13L33+N13 0; i=1,2 (6.29)

where L33 is the positive definite solution of (6.23b).

Notice that if the initial cross-covariance N13 = N23 =0, then (6.29)

IB = 523 = 0; which would be true if the solu-

tion of (6.27) and (6.28) blockediagonalizes the closed-loop system.

is satisfied if and only if 1:

6.3.2. FIS information pattern

It can be readily seen that when the output matrices are of the form

given by (6.5b) Structure-Preserving strategies involving only static linear

output feedback do not exist,
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When the output matrices split so that there are separate observation

channels for the individually and commonly observable modes, i.e., when

c - m—
Ci1841  Cyi8pn 0
Ei = ; i=1,2 ; (6.30)
0 0 ,,
- -~

linear static output feedback Structure-Preserving strategies do exist, and

belong to the admissible strategy set Ei defined by,

F F
- i by - . = - - ii i3 i
o= (9,5, =-Fy, Blyy bi=12. @3
0 Fay
Substituting 4, = ?i(yi) from (6.31) in (6.7) and (6.8), we get
X = A% ; ®0) = & (6.32a)
vy = Cx (6.32b)
J, = l-f % 6 fF)de; i=1,2 (6.33)
124 : 3
where
~ -1
Q = C (I+ Fi L i)c ; =12 (6.34)

and the closed-loop system matrix becomes ,
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K=%-3FT - B,iT, ~
@B Fn%y) 0 (A3 B1aF 130137 B1aF31C137 By F32023)
= 0 (Ayp=ByoF)rChs)  (Ay3=ByoF)3Cs3=By,F35Cr3=B15F3;C1a)
0 0 (A33 = By3F31Cy3 = By3F3Cs4)

_ L

Anp 0 Ay
S Ay By . (6.35)

0 0 A
3
o 33

Define Ml’ Mz and L as in (6.16), (6.17), and partition them as in (6.20). For any

given pair (fl,fz), such that Re A(K) < 0, M. >0 and L > 0 satisfy the

i
matrix Lyapunov equations

M1A+AM1+Q1 = 0;1i1=1,2 . (6.36)
AL+13" +N = 0 . (6.37)

P
Applying the Matrix Minimum Principle [59], the optimal Figo ?:3, !;3‘1 for the

Feedback Nash solution can be shown to satisfy (for 1,j = 1,2; {1 # j)
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]

Wy T il T

b - e = § ==t - ‘-1“' ]
11€11%35Csg + Fy3CialygCyg ™ RyyByg My Ly Cyy +My37Lyi4C54]  (6.38a)
de = -t Tde = =' . Amlne (1) -—t ¢S -t
Fy3Cy4Ly3Ci3 * Fi3CyalasCis = RyyBy My Ly4Coq+M 3 LasC i3] (6.38D)
Sk aslear (1) = Ay (L) = Ay (L), = ay (L), =
F3i = RyjlBiaMy3'lysCiz + BygMi3LyaCeg + BygMyy "LyaCiy + BygMi3 L3305
x [C,:L..C'.17t (6.38¢)
13033C43
where
(1) (1) (1)
MP o D o wD L (6.39a)
ij 33 i3
(Dzxe | oxt, (1), 2 s AN~ I
MRS+ AP+ T o+ FER FEOT, = 0 (6.39b)
(L) 3+ (g, axy() 3 FX'2 F* \C._ = 6.3
My Ajg + My Agy + AP M+ Co (T + FruRFig)Ci3 =0 (6.39¢)
Dy=x . =% (1), (L)% . =1 (i), =1 1 s =y
Myg'Agq + MMyt Myg"Ary + AfM 37+ Cry (T + FyqaR i Fig
~l g -
+ PR, F3C, 0 (6.39d)
Ak KA CEX K =
AggLyg + LygAyg +Afalys + LjsA55 + Ny 0 (6.40a)
Tk Ax Ak! - 0
Apjlig ¥ Afglay + LijAgy + Ny 0 (6.40b)
A% A%! - 6.40
A33L33 + L33A33 + N33 0 ( c).
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-~ = - ok b~ -~* 7 =
23, A§3 ; L = 1,2} areas in (6.35) with {Fii Fi;» Fyq = Fias  Fqy

igi . 4 =1,2}. The following proposition highlights the multimodel nature

L4

@, K

of the Nash solution.
Proposition 6.2:

Given the linear system (6.7a) controlled by two DMs, their observa-
tion sets (6.30), and their performance indices (6.8), the design of Structure-
Preserving Feedback Nash strategies under the FIS information pattern leads

to two low-order coupled optimization problems defined by

£y
- l 1 ®1A -
mé.n Iy E { 3 ‘g(yiyi + u;R,u,)de }

{ 210
subject to - -
Fii Fi3
31
3 where
- Ci1 0
2 ¥y = 2y
;? 0 C,,
; Ay Ag3=B44F34Cy3 Bis  Bys
:j (' zi - zi -+ ui; 21(0) = zio
3 0 433~ By3F35%y3 0 By
'_" b — L. e
Iy
M
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1, =1,2; 1#§

The solution to this pair of coupled optimization problems is given by the

set of equations (6.38)-(6.40).

Now, unlike the earlier problem of Section (6.31), we need to verify that
Re 1(&21) < 0; 1i=1,2,3

for the solution to be well-defined. Also unlike the earlier case, the Struc-
ture-Preserving Feedback Nash solution of Proposition 6.2 is completely inter-
acting. This is essentially due to the fact that equations (6.38a) and (6.38b)
cannot be solved explicitly for f:i and 523' Another significant difference
is that now all the optimal gains {F:i, FI3, F;i; 1 = 1,2} depend on the

statistics of the initial conditions.

Partial noninteraction results when {L13 = 0; L = 1,2}, In this case the

optimal solution is given by (i,j = 1,2; 1 # J)

Sk o p-l2r (L), T o= - =1 a4l

Fig = RygBygMig LygCyg(CqqlyyCyy) (6.41a)
-~ a=lay (1) -y - -y =1 6.41b
Fi3 = RyyB M 3 Lg3Cy3(CyalaaCyq) ( )

% o a-lear (1), = ~y (1)
F3i Rij[n Ma,'L..C.., + B, M 'L

13M33'L33Cyg + By My3 LyaCy3] (C13Lla5C3) (6.41c)
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Mﬁ), S'), Mg) are obtained from (6.39) with the control gains given by (6.41)

is obtained from (6.40c), and L

i is the positive definite solution of

Lis

ocfe?
Ai:LLi:L + Lu“u +N, =0 ‘ (6.42)

Furthermore {f;‘::;, i-"';i; 1 = 1,2} are such that

Rilyg + N3 =05 1=1.2 (6.43)

Now F*, is first obtained by each DM independently on solving equations (6.39b),

i1
(6.41a) and (6.42). This is the optimal solution of an output regulator problem
with parameters (Aii’nii’cii’nii’nu) [58].

In cases when the output matrices do not split as in (6.30), the FPS Struc-
ture-Preserving Nash strategies of Proposition 6.1 can be synthesized as feed-

back strategies using dynamic observers.

We let,
Fii F:I.J
ﬁi = ;1(21) = . ;i; i= 1,2 (6'44)
0 Fayg
- -
where,
—— - - -— '_; - j
Ajg  Ay3mByyFyy Bie By
e z, + + K& { C,.lZ}
z, z, 8y ¥y =[G4 G513
- ~ o g
L° B33 =By3F3; 0 B3

1,1 =1,2; 1 ¢ § (6.45)
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gain to be chosen by each DM.

!I {Fti,rz3,r§1; i= 1,2} are given by equations (6.24), and Ki is the observer

Notice that the dimension of the observer of each DM is equal to the
.I dimension of his own observable eigenspace, which is all be needs to recon-
ﬁf struct in order to implement the FPS Structure-Preserving strategy.
= Defining e, = z - Ei’ we get,
m (X, -x,© R LB F* <K, G.. R |

i1 Ti1vid i3 Tji" 33 Tilvi3 il
& _ _ 3
- - * - C
K12%4 A33 7 BysF35 ~KipC4s g2
I&iei i 1,5=1,2; 44 (6.46)
If we choose Ki such that
- 1

Re x(Ai) < - ;;; By > 0;1=1,2 (6.47)
) then we can write,
3 "
= By®y T A%y
- -

Re A(A;) <=1 ; 1i=1,2 (6.48)
'—‘-
é. Hence, by making the observer dynamics arbitrarily fast, we can represent the
- error system as a stable singularly perturbed system i.e.; ei-O as p; = a.
nf
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Rewriting the composite system and the feedback strategies as,

X = AX + Blul + Bzuz
(6.49)
“'1‘1 = Agje i=1,2,
<& * * * ®
Fiabi1 Fiab10 Fys Fii Fia
U, =y (%,e) = - . %+ L [t b2.(650)
0 0 Py 0 Py

Since e, -~ 0 as Wy = 0, yi(i,ei) converges in open-loop to a policy having a

unique feedback representation, which we denote by Vi(i); and

V@ = yi®; =12 (6.51)

where {YI(i); 1 = 1,2} is the FPS Structure-Preserving Feedback Nash strategy
of Proposition 6.l.
Due to (6.51) and the results of [25], we have

* *
"“’oﬁi-l:lo Ji(Yl’YZ) - Ji('YlaYz) ; 1i=1,2., (6.52)

It is to be noted that (6.50) is not the Faedback Nash strategy for .the system

€6.49) and the performance indices (6.8) within the class of admissible

strategies 1"1 defined by

i P8y ey Fis Fig Ty
r, = {Yil Y, (R,0) = - X+ e

3 | 0 0 Fai 0 Fay
M
: BRI L)
E' ij - . 21; K, fixed }; i=1,2 (6.53)
; K Fa
b N
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ade -
The Feedback Nash strategy Yy € Fi will in general depend on the choice of the

observer gains Ki' We do not compute ?: because the strategy 71 given by (6.44),

or equivalently by (6.50), has the property of being near-equilibrium and

a symptotic Nash [20] as established by the following proposition.

Proposition 6.3:

The strategy ;1(21) = yi(i,ei) given by (6.44) (or (6.50)) isnear-
equilibrium and asymptotic Nash within the class fi defined by (6.53). That is,
L -— — - ~ -— . ~ ~ . = .
||u|i|nlou*(yi'yj) JpOLYPE =05 Yy, €05 4,5 = 1,2; 1 #
and,
Ma (T VLY - 3,60 =0
i i) ’ 2
lufl =0 oo
¥ vy €Ty such that J,(vy,Y)) ST, (Vu¥p) 5 L5 = 1,25 143
The proof of the above Proposition follows readily from the results of

Chapter 2.

6.4. Decoupling of Completely Observable Systems

In situations when the whole system is completely observable through the

observation set of each DM, the 'core' is the full problem itself. But in
some such cases, if the DMs have access to all the states then the observa-
bility decomposition can be induced by using state feedback. The role of the
decoupling control in reduced-order modeling has been studied in detail in

[62]. Here we shall outline the procedure for multiple DM problems,
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transformations, the system can be put in the following form [62],

with

Hee

Ar A
A1 Ay
Ay Ay
.
(¢, O

=00 C22

A
A3

A

[

13

33

13

]x

023] X

................
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11

14

12

l%J

{311;513’ i = 1,2} being square and nonsingular.

Now 1if the DMs use the following strategies,

(-]

=

0

— -]

3
| 13231

1

1 —

—-1—

1812 = By;1Byshsy)

-] - - —a]l—
“Byy(Ay; =By2B1yAgyp)

--1-

“Bysh3

o
u1 + 322
°
0
0
—
ﬁ
0
% + 32
0

then the resulting partially closed~loop system has the form,

Suppose after appropriate state space, input space and output

e

space

(G&.S4a)

(6.54b)

(6.55a)

(6.55b)
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M - —a]- -— _‘ [ - r -
A= B1Bigha 0 A3 Bj1 By 0 By
: - = =elm = |- = [~ = |-
X = 0 Agg "BygBaghyy Apy (X + 10 Biyjuit 1By Byl vy,
0 0 a 0 B 0 B
B 13| | kI 23
(6.56)

It can be readily seen thag the system (6.56), (6.54b) has the desired form
of (6.7). Under appropriate assumptions, Proposition 6.1 can be applied to
design GI’GZ as FPS Structure-Preserving strategies.

It is significant o note that making the dimension of Eii as large as
possible results in a 'maximally-decoupled' system i.e.; a system in which
the decentralized control problems are of the highest possible dimension, and
consequently the 'core' problem is of lowest possible dimension [62].

The use of decoupling control introduces a degree of suboptimality if
the performance indices are chosen a priori. This is because the decoupling
control is chosen from a purely algebraic point of view without any optimality
considerations. -

We would like to remark that the use of decoupling control requires a
degree of mutual cooperation among the DMs. This cannot be guarenteed under
the noncooperative Nash concept in gen;ral, unless, the resulting advantages
constitute a strong enough incentive for the DMs to compensate for the per-

formance loss resulting from the use of decoupling control. But, within a

cooperative framework, the use of decoupling control can be readily ensured.
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In problems where there is a need for the DMs to use the decoupling
control, it will be more appropriate for them to choose their performance-
indices with respect to the strategies ;1 after the decoupling has been
achieved. Again, this is easier to ensure in a cooperative framework than
in a noncooperative framework.

Hence, in situations when the decoupling control has to be used,

a semicooperative or cooperative framework is desirable for the application

of our techniques.

6.5. Extensions
In this section we shall discuss briefly, extensions of our ideas

to many DM problems and cooperative Pareto games.

6.5.1. Many decision maker problems

In situations with more than two DMs there is more than one way to approach
the problem; each approach resulting in a different order of simplification.
Ideally one would like to identify the individually observable modes, the pair-
wise observable modes and so on; and overlap appropriately the input structure
of each DM with this observability decomposition. The design of Structure-Pre-
serving Nash strategies would then lead to the solution of low-order control
problems, problems where two DMs interact, problems where three DMs interact
and so on up to the core problem where all the DMs interact.

In the three DM case the QA,cl,cz,Ca) matrices in the observability decom-

position form will look like
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0 4,

0 Ay,
' 0

0 A,
0 0
0 0
0 0

¢, O

€ Cy5
0 ¢,

A6 Ay
0,
A3 Ay
0 A,
0 A
hee A7
0 Ay

e 0

11 AN

It can be readily seen that the number of blocks to be identified in the sys-

tem matrices grows exponentially as the number of DMs increase.

Hence for a

large number of DMs such a decomposition may be difficult to achieve in prac-

tice. The other extreme would be to identify only the modes observable by

each DM alone, and consider the rest as commonly observable modes.

This will

result in only a first order of simplification because the core problem will

be of a higher dimension. Of course in practice, depending on the problem,

any approach in between these two extremes may be adopted, resulting in dif-

ferent orders of simplification.
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6.5.2. Pareto games

Multimodel solutions to cooperative Pareto games based on the structural
decompositions of Section 6.2 can be obtained in a straightforward manner. To
illustrate this point we shall give below the Structure-Preserving Pareto
strategies under the FPS information patterm.

Define the overall system cost as

2
3 = E @ ; -1 (6.57)

gJy 5 05¢

<l;a +a

i 1 2

Applying the Matrix Minimum Principle, the FPS Structure-Preserving Pareto
strategy YI(-) € I, , defined by (6.9) for the system (6.7) and performance

index (6.57) is obtained as (for i = 1,2),

* rel ot
Fyq = Ry Byg My (6.58a)
F*. =R 13" M (6.58b)
13 = Ryy Byg M4
* _a=loy o1 ' -1 c=l 2y -1
Fag = RyyBisl g Mag * Myglyalyg I+ Ryy By, (M5 + MyyLy5lsy51 (6.58¢)
where
- o | - - ~ l\-l“' -
MyAyg A My +CiiCyy - MyyBygRyyBygMyy = 0 (6.59)
o S okt -t ks
Mg+ MygAgq + A M3 +CiuCig+FiRFig = 0 (6.59b)
A+ A*'M. .+ % o, M A* +A*M._ +C'.C.. + F*'R, F*
Myghyy ¥ AggMag + & Y Mahys ALt + CiaCig *+ FiaRysFis)
*'A oo et A o+
+ & FagRipFay + @F 3R Fyp = 0 (6.59¢)
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.k v St =
AjiLyq + Aj3lay + LjsAq3 + Nyq 0 (6.60a)
A* ,.*' -
A3qlyz + Lygh3y + Ny 0 . (6. 60b)

The controllability-observability of the triple {(Kii,ﬁii,ﬁii); i =1,2} guar-
antees {Re X(&:i) < 0; 1 = 1,2}. For the solution to be well-defined we need

only to verify that Re x(A§3)< 0. The solution given by (6.58)-(6.60) has fea-

tures similar to the Nash problem of Section 6.3.1 (like partial noninteraction).

The Structure-Preserving Pareto strategies under the FIS information can
be obtained in a similar manner. The solution will have features similar to

the Nash problem of Section 6.3.2.

6.6 Applications

Now we shall examine the applicability of our design methodologies to the

control of large scale interconnected subsystems and multiarea power systems.

6.6.1. Large scale interconnected subsystems

Consider the large scale system wherein each subsystem is controlled by

one DM having his own performance objective. The system considered is of the

form ‘N
xi = Aux1 + j§1 Aijyj + Biiui (6.61a)

JHi
yy " "'xi ; i=1,2, . , N (6.61b)
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where the output variables y, are the interconnection variables. The above
problem has been considered in [55] as a single DM problem. We shall demon-
strate that when viewed as a multiple DM problem, the techniques developed in
this paper can be applied for optimal strategy design.

For simplicity we shall consider the two subsystem case (N=2). As 1in
[ 55] suppose that each subsystem is transformed with respect to its own output.

The transformed system can be represented as

- . ] T.a 1) o 12 =] N - -
¥y 1-*{1) F{z) I F 0 Fyl rc';n o
1 ]
[ ]
[ ]
]
. (L) 2) v _12
e |Far Fa2t {1 Fe O *ir | |12 0
------ ol el I bl e S LR Bl P X
v 21 1 (2) )
Y, F 0 § Fli' i /) 0 G2
4
. 21 ' (2) (2)
| %r | | F: O v Fn Fp' | | *®e| [%] [Sa |
By a simple reordering of variables (6.62) can be written as,
il GO e 127 ] T [o]
.| [F22 ) 0 1 Far B | [ o 0
..... -----‘----‘--‘------------- - e ap ab - N P - -ay o
R
. P2y )y 21 (2)
Xr 0 1 P’ i Fp F2a1'| | %ar 0 €21
----- = -----‘=-------i------------- comnl G| oo u1+ ====| 8y (6.63)
. (1 ! ¢ o) 12
41 F12 i 0 i Fp F 41 €11 0
P
: PoL(2) V21 2)
v o + @1 ¢ F v 0 G
|2 | % F Pz | (2] [ °_ 22

Now, by making an appropriate input space transformation[55) and letting DMi use

i;)xir’ we obtain a system

wvhich is in the familiar observability decomposition form. The interconnection

his own residual state feedback to cancel the terms F
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variables y; represent the variables observable by both the DMs, and the resid-

uval variables x, represent the variables observable by DMi alone.

ir

Suppose DMi chooses his performance index as,

-}
1 1 L A~y -~
" 'i'£ (y¥y + %X Qpxgp + uyRyupde s 1=1,2 (6.64)
where, u, = decoupling control + Gi then, assuming that each DM has access to

all the interconnection variables and his own subsystem variables, Structure-

Preserving linear Feedback Nash strategies U, can be generated from multimodel

i
solutions of Proposition 6.1.

6.6.2. Two-area pPower System

This example has been considered in [55] in the single DM context.
Here we shall assume that each area is under a different control authority.
We shall first transform the system into our desired form given by (6.7),
and then obtain Pareto strategies on solving equations (6.58)-(6.60).

A two-area power system with each area containing two thermal

Plants is constructed from [60]. The system is modeled by

x = Ax + Blu1 + Bzu2

(6.65)

vy = Cix ; 1=1,2

9, uy € R?, u, € R2, Y1 € Rz, Y, € Rz. The state, control and out-

vhere x € R1
put variables are defined in Appendix D.

The system matrices are given by,

e

e s

o 7

[
B

VO |
i

[
i maa s
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(1) (1) =
ALY 0 Ajs 0 0 0 0
(1) (1)
0 Ay Ays 0 0 0 0
(1) (L -
't A3 0.1124 -0.083 0 0 0
- lo 0  22.21 0  -22.21 0 0
. -0.1124 (2) (2)
0 0 0 0.083 A a1 A32
) (2)
0 0 0 0 a3 A 0
0 0 0 0 a0 a2
L i
»-'-’;.‘ r 1
o - -2 0 0 0
o M @ W, | P30 0
m Ay TA TAyn mAy
i 0 0.167 -0.167 0
I., -~
- 0 0 2 =2
- P

r
)
:

T T T— o ,,
1% 0 i WNGROICON T,

e . . . e

P CH ] . R R S PR
. S L A . -

(1) _,@) o, _,@ _ .
A13 A13 A23 A23 [~& 0 0 0]

2
A;i) = A§1) = AS) = Ag) =[0 0.0l 0.0093 0.014]

L
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- - n
B(*) 0
11 0
1) 11x2
0 B
22
B, =| To=s=s=ss=~ s B, = | me=mmmmnne- ’
1 2 @)
B 0
0
11x2 )
0 By,
» - | o
r -
4
0
(1) _ @) _ (D) _ @)
Bjp® = By = Byy” =By 0
0
N
[] ] ]
10 1o
= 0 : =
¢y L02x8 i 0 1 i 2x9 i G 02x9i0 L §°2x8 .

After two steps of chained aggregation [54,55] and one input space

transformation, we obtain the following representation:

A |

ek

S W

LN
4

.1x




. s
271 L 1=
x Fp O Fial | %1
. =(2)
- ) - a
%, | = [0 il Foal | %5 |+ 1
% F F x ﬁéZ)
x F
|73 | 31 32 33 |73
il € RS : iz € R6 ; §3 € R7 ' (6.66)
where
-5 4.75 0 o () 0
o
ﬁ & 0 -2 0 0 0 0
f -
0 0 -2 2 0 0
n 1) : im
. I Fll s 1 1’2
. 0 ‘0 0 -0.167 0.167 O
0 0 0 0 -5 4.75
S 0 0 o o o -2
i - -
- r | —
S -0.1124 -0.083 ¢ 1 0 0 0
o 22.21 o -22.21 ¢ 0 0 0
o
S 0 0.083 -0.1124 0 0 1 0
%‘ e F -
F— 33 0 0 0 -2 1 0 0
-0.38 0 0 0 -0.167 0 0
d
. 0 0 0 0 o -2 1
o 0 o -0.38 0 0 -0-12
e -
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B ] B =
O4x6 0
cemsa= 6x6
- (L = | coonm-
T F(2)
| °2x6 . L 2]

P$Y = [0.136 -0.222 0 0 0.136 -0.222] ;  di=1,2

cﬁ) = [0 =4 0 0 0 4 1 s is=l,2

GS) = [0 4 o 0o o0 o] ;o i=1,2 R
019 o o] :

Gy, = [0 0 0o o0 o. 1 b

= [0 0 o o0 o 0 0.19]"

|

Now we need to apply a decoupling control to cancel out the terms

1-'31 and F32 in (6.66). The decoupling control is chosen to be, |

-y S9N o
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ut) = [-0.706 1168 0 0 -0.706 1.168] X, + i) ; 1=L,2.  (6.67)

Substituting (6.67) 1in (6.66) we obtain,

-] T 1.7 T ]
= =(1) = 1) (1)
x) Fli 0 Pl ¥ ¢11°  Sp2
-(1)
= | =(2) - u
X, 0 Fl7' Fa| [%] + |0 0 *tl)
u,
2
x 0 0 F x 0 G
3 33 3 31
21 L 1L L i
(6.68)
o n
0 0
=(2)
+ 1@ @ |51
11 ‘12 ~2)
)
0 G
32
L .
where
p— -
-5 4.75 0 0 0 0
-2.864 2.612 0 0 -2.864 4.612
=(1) -(2) 0 (4] -2 2 0 0
Fi1 =Fpp =
0 0 0 -0.167 0.167 ©
0 0 0 0 -5 4.75
0 0 0 0 0 -2
___] J

- ‘ . - . . R W R - -
LN RIS S PP WL W W WO W G Sy e - KRS S AT SN CLE T P P WL



- " r* 2hadarShailatnasl aEnl S A i A e e e

148 3

]‘ Now the system 1is precisely in a form suitable for our design techniques. -
o

The frequency deviations in the two areas and the tie-line power flow

F Rt A

comprise part of the core variables §3. The variables El,ié are the
!I residual variables associated with each area.

The nineteenth-order game in its original form (6.65) may be
computationally intractable. But in the form (6.68), and allowing only
E' FPS Structure-Preserving strategies, we need only to solve two sixth-order &

e optimal control problems, and one seventh-order problem where the two

DMs interact.

3
For the Pareto-optimal design, the cost functionals are chosen j
to be g
]
J =£ra(§'Q§+§'Qi+;’ﬁG)dt ; i=1,2 ., .
i 2 .)o MitiLTi 3%1373 ili ? i | 1
with

AR
A

Q;, = diag (10, 10, 10, 10, 1, 1)
= diag (12, 15, 10, 5, 5, 5)

= diag (10, 7, 0, 0, 0, 0, 0)
Q,; = diag (0, 5, 10, 0, 0, 0, 0, 0)

Rl = diag (10, 25)

o
]

diag (5, 20) ; Cov (ig =N=T1,

| SRV VNI FEI PR |

2 3
Case 1: Pareto cost J = 5 J1 + 3 J2

*
The optimal gains Fii are first obtained from optimsl control

REE
. _a

problems (6.58a), (6.59a)

*
F11 = [-0.167 -0.722 0.0132 0.571 0.043 0.13]
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*
F,y = [-0.402

Then the optimal gains F

oA P DA S P

-1.082

149

0.017

*
i3

0.528

0.042

0.714].

%
F3i are obtained from the coupled

equations (6.58b,c), (6.59b,c) and (6.60),

*
Fi3 = [-4.65

*
Fyq = [-6.62

%
Fay = [16.5

%*

-16.28

-21.35

0.589

Fqyp = [-17.08 0.568

1.37

3.04

-16.44

16.33

12-44

‘0 . 653

0

-5.53

0

-0 . 068

0

0 0]

-10.92

0 0]

-8.21

4.15]

-0.121].

The closed=loop eigenvalues turn out to be -0.2+j0.51, -0.24+j0.48,

-0.39+0.05, -0.52+§0.07, -1.03+j1.5, -1.99, -2, -2.09, -2.21, -2.21,

-5.18+j1.92, -7.09+j1.96.

The feedback strategies are obtained as,

*

-0.722
Uy *1-1.168

u, = 2x8

0.167
0.716

0.314
0.811

0.263
0.03

-1.014
-0.027

-0.591
-0.03

-0.144
0.776

-00 13
-1‘ 168

-0. 784

-1.082
-10 168

-0.714
-1.168

-0.043
-0.716

0.773
-0.028

0.402
0.716

.0. 042
-0.716

-0.571 -0.013
0 )

-0.065 E

0.781 | 2x8

-0.197 0.519

-0.057 0.037

-0.528 -0.017
0 0
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Case 2: Pareto cost J = 0.1 J1 + 0.9 J2

-
- r
-
L

. .
The gains Fii do not change and remain the same as before. The

gains F:3, F;i are obtained as é
F:3 = [-6.72  -18.33  4.47 10.92 -6.71 0 0] :
F;3 = [-5.91 -19.38  3.72 0 0 -13.08 - 3.17] ;
d
F’;l = [21.26 4.715 -20.38  -5.05 -2.313 0 O]
p
Fr, = [-15.15 0.481 14.77 0 0 -0.514 -0.131] .

The closed-loop eigenvalues turn out to be -0.13+j0.56, -0.172, -0.39+j0.05,

-0.52+j0.07, -0.61, ~-1.03+jl1l.15, -1.99, -2.0, -2.21, -2.21, -3.12,

-5.18+§1.92, -7.09+j1.96.

The feedback strategies are obtained as,

-0.722 0.167 0.412 -0.7l16 -0.13 -0.043 -0.571 -0.013
YL T |-1.168 0.716 0.068 -0.11 -1.168 -0.716 0 0

*

-0.913 -0.066 0.884

5 : -0.395 1.012 -0.111 ! O
! 2x8
]

0.198 0.812 -0.133 -1.082 0.402 -0.156 0.363
0.626 -0.012 0.494 -1.168 0.716 -0.032 0.024

(N
g
o
oo

-0.714 -0.042 -0.528 -0.017
X
-1.168 -0.716 0 0 1
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] Case 3: Pareto cost J = 0.9 J, + 0.1 J,

v, *

a F:i remains the same. Fi3’ ng are obtained as,

) rta - [-2.82 -13.19 1.11 13.73 -3.88 0 0]

& - *
SRR F,, = [-7.75 -25.62 6.51 0 0 -11.21 5.34]
q 23
k _‘_ F;1'[13'91 0.366 -14.48  -0.489 -0.041 0 0]
i Py, = [-18.19  0.614 17.56 0 0 -l.112 -0.291].
- E; The closed-loop eigenva’ues turn out to be -0.1+j0.66, -0.158, -0.39+§0.05,

-0.52+10.07, -0.542, -0.98+j1.52, -1.99, -2.16, -2.21, -2.21, -5.18+§1.92,
~7.09+j1.96.

The feedback strategies are obtained as,

-0.722 0.167 0.115 -0.482 -0.13 -0.043 -0.571 -0.013
1~|-1.168 0.716 0.019 -0.023 -1.168 -0.716 0 0

*

n -0.106 0.518 -0.06 | (::>
.:{ : 2x8
-00613 -0.014 0.593.
. 10.523 1.131 -0.393 -1.082 0.402 -0.403  0.626
- [}
: uy 2x8 1 0.928 -0.047 1.022 -1.168 0.716 -0.109  0.042

-0.042 -0.528 -0.017
-0.716 0 0
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Notice that the strategy of each DM requires a knowledge of the p
states of his own area and only the frequency deviation of the other area; )
Y
a feature desirable from implementation point-of-view. The time responses 3
of the tie-line power flow and frequency deviations of the two areas are N
plotted in Figures 6.1-6.3. It can be seen that the response of the ]
frequency deviation corresponding to the area weighted lightly in the i
Pareto cost is more oscillatory, which is what one would expect. The

response of the tie-line power flow does not change significantly in the

three cases.

6.7. Conclusions
In this chapter we have examined the role of the observability

structure in multiple decision maker problems. By identifying explicitly

s -F 4

the observability decomposition induced by the observation sets of the

DMs, and by overlapping appropriately the input structure of each DM, H

we have shown that the design of Structure-Preserving Feedback Nash ?

strategies leads to multimodel solutions. Under the FPS information

pattern, the multimodel solutions are shown to admit partial noninteraction
. among the DMs. Under the FIS information pattern, Structure-Preserving

strategies involving only linear static output feedback do not exist in R

general, When the output matrices split so that there are separate

| VR

observation channels for the individually and commonly observable modes,
Structure-Preserving strategies do exist and are again generated from i

multimodel solutions. But in this case, the solution is completely

LY 9%

interacting unless certain conditions on the statistics of the state variables

are satisfied. When the output matrices do not split, the FPS Structure-

LN LA U PPN, WL ISP T WAL RPN, PRSPPI SN T ISP TR CUIP PSPPI CP U SORT O WHT G YO SR SR EPUTAPUE WG S WO WA WU S GG NP TP WP
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Preserving strategies can be synthesized using observers with arbitrarily
fast dynamics. This strategy has the property of being near-equilibrium
and asymptotic Nash. When the system is completely observable by each

DM, the observability decomposition can be induced by using the decoupling

. controls. But in such situations, a semi-cooperative or cooperative

‘ framework is desirable.

m - Applications to the control of large scale' interconnected subsystems
: and control of multiarea power s};stems have been examined; and extensions

to many DM problems and cooperative Pareto games have been discussed.
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CHAPTER 7

CONCLUSIONS

The main thrust of this thesis has been towards analyzing the
interaction between model simplification and control strategy design in a
multimodel context. We have studied several realistic situations which
allow the decision makers to use different simplified models of the system.

In Chapters 2-4, we have established the well-posedness of
multimodel generation by 'k-th parameter perturbation' for classes of
linear multiparameter singularly perturbed systems. In Chapter 2 we have
considered deterministic models without the weak-coupling assumption on
the fast subsystems and obtained near-optimal decentralized strategies
from multiple noncausal reduced-order models. In Chapters 3 and 4 we
have considered stochastic version of the model considered in [15,16]
with decentralized observations for the decision makers. 1In Chapter 3
we developed multimodel solutions for a Nash game with prespecified
finite-dimensional compensator structure for each decision maker. 1In
Chapter 4 we developed multimodel solutions for team problems with
sampled observations for the decision makers. Both the static team
problem and the dynamic team problem with one-step-delay observation-
sharing pattern have been considered.

In Chapter 5 we have considered the average-cost-per-stage
problem for finite-state Markov chains. The focus was on obtaining near-
optimal incentive policies for controlled Markov models consisting of N

weakly-coupled groups of strongly-interacting states. A hierarchical
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algorithm, which allowed for multimodeling on the part of the 'local'
decision makers, has been proposed for computing the near-optimal incentive
policies.

In Chapter 6 we have taken an aggregation-based approach to
multimodeling. Based on input-output considerations, we restructured
the problem in such a way that the optimal solution within a class of
admissible strategies (defined as Structure-~Preserving strategies) could
be obtained from multiple reduced-order models. In some cases, the
solution has the desirable feature of partial noninteraction among the
decision makers.

The main contribution of this thesis has been towards strengthening
and extending the multimodeling concept beyond the framework within which
it was originally introduced in [14,15]. We have achieved this by
examining three different approaches to multimodeling. The first approach
(same as in [14,15]) has been to establish the validity of a rational
multimodel generation scheme which is chosen a-priori. The results of
Chapters 2-4 have strengthened this approach by establishing the
'robustn?ss' of multimodel generation by 'k-th parameter perturbation '
proposed in [15], to a class of solution concepts and information patfemrns.
The next two approaches have extended the multimodeling concept beyond the
framework of [14,15]. The second approach, taken in Chapter 5, has been to
develop a numerical algorithm for computing near-optimal policies, which
allows the decision makers to use multiple reduced-order models. The final

approach, taken in Chapter 6, has been to induce multimodel solutions by

Iy

adnd

Ju Yy
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an appropriate restructuring of the problem and a suitable choice of
admissible strategies. The results of this thesis have revealed the
interplay between model simplification tools like time~scales, weak-
coupling, controllability-observability, and stratégy design concepts like
team, Nash and Stackelberg.

There are many possible directions for further research along the

- lines of the results obtained in this thesis. For the models considered

in Chapters 2-4, Stackelberg problems with dynamic information (with/without
N memory) for the leader [64] can be analyzed. Also multimodeling possibilities
f@ can be explored for nonlinear deterministic and stochastic models of the type

considered in [67,68]. For Markovian models considered in Chapter 5, it
will be rather straightforward to analyze the finite horizon and infinite
horizon discounted cost problems with state information. A nontrivial

extension would be to problems with decentralized imperfect information for

the decision makers [66]. In the aggregation-based approach of Chapter 6,

[ ¥ we have assumed an 'exact' system decomposition. A possibly more practical

- problem would be to consider situations when there is only a 'weak'
decomposition of the system. A perturbational decompositiun-aggregation

. approach could be developed to obtain near-optimal policies for such

problems.

e Possibilities for a multimodel design approach based on

‘ overlapping decompositions [69] and state vector partitioning [70] can
also be explored.
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APPENDIX B "
MATRIX DEFINITIONS APPEARING IN CHAPTER 3 k
¢
A0 A1 A2 Bo1 Bo2 |
A= 1A/ An/ 1 spfiafer s Bt [ By/e o Byt 0 s
Aoles  E22haifer  Ayale 0 Byaley j‘
L
o -
L= Ll//q ‘o
L,//e, 4
-1
) L Co1 0 0 ;
€ =G — & 0=
: € 1
1 0 c 0
e 1
l .
) L - €2 O
=[Gy 0 —==Gl= ]
€ 1
2 0 o0 C
e 2 1
1 :
-1 ] . = -1 . - - -1 . . - -1 . D
S; = BR"B; 5 Soq =By RyTBl 5 S =B RTBL o Sy =By Ry By,
I‘l = block diag [I‘Ol,el 1’01 3 1"2 = block diag[r'oz,o e, T ]
Ql = block diag[QOl’Ql’O] H Q2 = block diag[Qoz,O,QZ] ;
Vi = block diag[Voi,Vii] H ®@ = block diag[w,vl,vzl 4
-1 1
Vij = block diag[voi,vii] H Tii Cii Vix Ciy
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L, %20 222 FarX® zp(i)(c) -7:-; f12()) j
Rgo = block diag[F{y)-5 ki) ~01Kc()i)" Foo ~S02K60’ ~S0zk c()g)'] ) e
Roy = block dtaglr(y)-e;so, k0050 k[, £~ 50,600 Vo < > S09K17 ] i
Agy = block d"““’m ~¢2501K c():})v ts 01"12 . Fop 6)S0oKep - sosz(g)] *
K)o = block diag[F(l)-SOIK(%) snxf)i)', (2)] 5
A, = block diag[F{}’ ‘1501“8) suxﬁ), F$)) .
Ay, = block ‘““g["(l) ‘u 51K c(:;) c2 ! 8) 7]
Ay = block diag[F{y), F{2)- 5,2 -5, K(Z)] :]
8,1 = block d"ag”ﬁ)’ Fz(i) c zsozxc()i)\/_j : o, 22% g)] ' *1
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APPENDIX C

PROOF OF PROPOSITION 4.1

The unique optimal solution to the static team problem defined by

(4.11a), (4.14) and (4.12) is given by [36],

* = - X - 'sx . »
u/(e) = P [y, -C,x 1-B,Sx(t); 1=1,2. - (C1)

S(t) is the nonnegative definite solution of the Riccati equation

S+A'S+SA-S(BlBl+BzBZ)S+Q = 0; S(tf) = Q (C2)
x(t) = (A-BlBlS—BzBZS)iE(t); i(co) -:’:o (c3)

-L.£,]1-B'

i

Si(t) is the nonnegative definite solution of the Riccati equation

S = ! - ! = . = . = >
S, = A'S,+5,A-5,B.B.S +Q = 0; S;(t.)=Qg;  1=1,2 (c5)
and . . -
- - ] ' T . =0 - .
B [ABiBiSi]Pi+BiBi[Ki+SiLjZi], P,(t)=0; 1,3=1,2; i#3  (ce)
* r ' ) r ' - - 13 = .
L, ALi+BiBiSi[Pi-L321]Ci~BiBiKiCi, L(e)=1; 1,3=1,2; 1fj (C7)
J - - - ] ] - ] B T J .
K, (a-B,B.S.) 'K, 51333353“'3 Lizj]cjzi+sinjnjxjcjzi,
K (ce)=0; 1,5=1,2; 1#j (C8).
= ! ' -lo =
I, = £ Ci(C,LC +R) 5 1=1,2. (€9)
The minimum value J¥ is given by
e
* o s .. % '-' = '
J* = J(u},u) xOS(O)x°+tr(ZOS(O))+tr(f S(L)FF'de) +J_ (C10)
t:O
where t

f 2 ' ] ]
. CORINES TN ¢ DRIV ¢! 2)',(2) '
3 :r{[iflu\o AUE AT AR+ AR +SB B SW)]dt (Cll)
o]

i i i i i
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A7 (e) = BISV
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i=1,2

@(to,to) = I,

i,j=1,2;

i#]

-B,B'K

1740y

W(to) =0

1 .
)4-3Bis§(c,c°),

Vi(to) =0

1,j=1

223

i,j =1,2;.

1#3 (c12)

(C13)
(C14)
i#)

(C15)

(C16)

(cl17)

To prove (a) we express S(t), Si(t), f..i(t:), Ki(t)’ f’i(t) in partitioned form as

i
S00

e, S!

$(t) = 15501

?
£2%02

C~(1)
Loo
N et
L,(t) =L
~(1)
L k20

Substituting these forms in (C4),

obtain

- (m (1)
Py = (BpsSgo

Substituting the partitioned forms im (C5) and (C6)-(C8)

limit as ||¢|| =

€501
€511
4
"€1%2°12

~(1)
Lo1

~(1)
Iy

~(1)
Ly

[ ] ]
L)
+ ByySo1

0 we get,

£2502 - S50

er€aSa |5 Sy() = elséi)'

£2522 %7
@] [
ifé) » Ky(e) = Elei) ’
5 | o5

Bo1 Ko

elséi) ezséé)
els{i) JEIEESEE)
“EIEZsfi)' Ezsgg) ]
Piéi).
Pi(t) = 5{1)

expanding out and neglecting O0(llcl) terms, we

00 “is

1) |

Bji Ky

¢D '
LOi‘zif) + ByyS

es

1)
i

S Tee)

T
10 E157L41

L)

(Cl18)

and taking the
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So0 Sgs + 0qlelDd 3
@) ‘g 4 A . '3
Sot” = Syg Bog Byy Syg Ay +0(ell): Ay = A;y-B B,S,

s’ = Fye + Qe

~

>

1gy) =Ly, +0(el))
1 - &y (eatg) +0(le|)
1 = oqep

€ .

1 [ d

1 !
Bygl Boy Sig Lys t+ 0Qlel)

TA) a o5l Ar-
Lio (Gy~Sge Ayy

Ny 1 ~y
Y = +oqed

~~

1 [ ]
Byy) Byy Syg By +O(felD)

— Al-l
1~ Sgg Ay

1) .

Py (e
1

kD =g, + o]

k) =5..6 B K, _ +0 )
i 1f Gy Bog Kyg + 0(ef

where

G, =[alp, +5 als, . 8, +atls yd s, )s,, 8.l
g " [Agy Byy + S Ay Sy Byy + (Ay5 Biy)(Ayy Byy)' Sye Byy

1,j=1,2; L # j /

Substituting (C19) ingo (Cl8)and manipulating terms we obtain,

Pi = Pis - Byy sif Yog (t,to) :if + 0(e!l) (C20)
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*
Next,consider the second term of ui(t) from (Cl): —

a

] - ] ' -— ! -
By S x (£) = (Byy Sgg + Byg Sgy) Mg(E) + Byy Syy M, (E) (c21) ,

Substituting the partitioned form of S(t) in (C2) and taking the limit as

"e“ - 0 we obtain

\ - ;
S00 =5 + oqjelld o
S . =S B. B., S.. AL +0(|el]) 5 (€22) 1‘
01 s 0i “ii “if Tid 1
Sip = Syp *+ 0(e])s Sgy = 0QfelDd ) ﬂ

Using (C22) in (C3) and taking the limit as He” - 0, it can be shown that

-"_rl 2 ‘-.'4. 'l

g (t) = Tgg (€) + 0(e|]) (c23)
- -— - J —
Mg (€) = Mye(®) + ai_}. Byy (Bog Sgo * Biy Sgi) Mg (8 + 0(|e|) (C24)

PR AN

Substituting (C23),(C24) in (C21) and rearranging terms we obtain

By S x (t) = il Bl Sg Mog(t) + Bjy Syg Myg(8) +0([¢l) (c25)

Therefore, (C25) and (C20) imply

R

uI(t:) = uyp(t) +0(el]); 1=1,2; £ € [te,] © [£g,t,]

The reason the above approximation is valid only on a subinterval is because
we have neglected the boundary-layer terms.

To prove (b), we need to obtain the limiting expressions for the

variables Vi’ W and consequently for A(i) A(i) and x(J)
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- - poe -

(1)
Yo Woo Wor Vo2
1) - '

Le? Vi - V1 and W W01 wll le
1) ' '
vy Woz W12 Wy

- - % -—

Substituting the partitioned forms of A and W in (C15),(Cl16) and taking

the limit as "‘" - 0 we obtain

v = v +oqep

RN CARCRIINE WCR I IR CHN 4 W B11180:5. %15
+0qje|))

V(i) _ (Cc26)

P <Pj (t,to) + (¢l
WOO - Ws + OQlc”)
Wig =Wy +0q¢)

Wor = Wiy = Q<)

Substituting (C19), (C20), (C22) and (C26) in (Cl2)~-(Cl7) and manipulating

terms results in

1) 1) L (W)
Ao A + Aof + 0(Chel)

Os
(1) _ ) (1) ]
Ai Ais + Aif + 0et) (C27)

1) . @ _
Ai Ais + OCkel).

Lsing these limiting values in (Cl0) and (Cll) and simplifving the terms gives

.8 the desired result

CHME W G WU I WA A G 2 N Y Al o .
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ook L Gk 4 Tk
J Js + Jlf + sz + O0(tet).

Neglecting the boundary-layer terms does not affect the approximation in the

cost because their contribution to the cost is O(iel).
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APPENDIX D

MODEL VARIABLES OF THE POWER EXAMPLE OF CHAPTER 6

valve

power
1 and
power
1 and
power
1 and

valve

power
1 and
power
1 and
power

1 and

position displacement in first thermal unit of area 1 and 2.

output displacement of HP turbine in first thermal unit of area
2.
output displacement of IP turbine in first thermal unit of area
2.
output displacement of LP turbine in first thermal unit of area
2.

position displacement in second thermal unit of area 1 and 2.

output displacement of HP turbine in second thermal unit of area
2.
output displacement of IP turbine in second thermal unit of area
2.
output displacement of LP turbine in second thermal unit of area

2.

frequency deviation of area 1l and 2.

tie-line power flow connecting area 1 and 2,

set-point adjustment of first thermal unit in area 1 and 2.

set-point adjustment of second thermal unit in area 1 and 2.

¥y iy, = frequency deviation of area 1 and 2.

(1),(2)
Y291 °F

tie-line power flow of area 1 and 2.
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